進階搜尋


下載電子全文  
系統識別號 U0026-1208201919081800
論文名稱(中文) 光電式幾何精度檢測系統應用於精密製造設備之研製
論文名稱(英文) Development of photoelectric geometric error calibration system for precision manufacturing machines
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 107
學期 2
出版年 108
研究生(中文) 陳柏宇
研究生(英文) Po-Yu Chen
學號 N98991051
學位類別 博士
語文別 英文
論文頁數 89頁
口試委員 指導教授-王明習
指導教授-覺文郁
口試委員-周榮華
口試委員-沈金鐘
口試委員-王永成
中文關鍵字 角度定位  工具機  雙軸  垂直直度  幾何誤差 
英文關鍵字 rotary axis  angular errors  machine tools  dual-axis  vertical straightness  geometric errors. 
學科別分類
中文摘要 隨著精密製造的與時俱進,加工製造設備的加工精度要求不斷地增長,對於製造成品的要求朝向兩個方向發展,一個方向是產品尺寸微小化,另一方向是產品尺寸巨大化並要求極高的製造精度。因此在加工設備的尺寸同樣隨著成品尺寸也日漸增加,對於加工製造設備的檢測技術同樣被視為開發的重要課題。加工製造設備的誤差大多來自於組裝過程與元件品質。因此本研究以檢測多種自由度誤差與組裝誤差之技術為目標,開發具有高精度、高效率與低成本特性之檢測系統。
在多自由度誤差檢測方面,本研究主要針對加工製造設備於組裝及運動時所產生之多自由度誤差,建構三種高精度檢測系統,包括線性滑軌組裝幾何誤差量測校正系統、工具機雙軸直度誤差檢測系統、工具機旋轉軸角度誤差檢測系統。本研究提出之系統可應用於工具機、三次元量床、高精度X-Y平台、線性滑軌等運動誤差檢測與分析。
本研究所開發之檢測系統主要整合光學設計,電子訊號處理與數學模擬分析三方面技術,可應用於精密機械、光電產業及半導體產業等相關設備檢測,藉由本文之研究成果可提昇我國精密檢測之技術與設備研發之能力。
英文摘要 With the advancement of precision manufacturing, the precision requirements of the manufacturing equipment are constantly increasing. The finished products are moved toward two trends: one is that the product size is downsized into micro-/nano-meter scale, the other one is the product size is enlarged. Regardless of which situation, the inspection technology of the manufacturing equipment is regarded as an important issue. Most errors in a manufacturing equipment system come from the assembly process and component quality. The aims of this study is to develop a high accuracy, high efficiency, and low cost inspection system which is used to inspect or measure various degrees of freedom (DOF) errors and assembly errors. In terms of multi-DOF error inspection, the main purpose of this research is to develop a measurement system which can measure the multi-degree of freedom error caused by the manufacturing equipment during assembly and movement processes. Three kinds of high-precision detection systems are constructed, including a geometric error measurement system for linear guideway assembly and calibration, the machine tool bi-axial straightness error detection system, and the machine tool rotary axis angle error detection system. The proposed system can be applied for detecting and analysis of motion errors such as machine tools, three-dimensional measuring beds, high-precision X-Y platforms, and linear slides. The developed detection system mainly integrates optical design, electronic signal processing and mathematical simulation analysis. It can be applied to the detection of related equipment such as precision machinery, optoelectronic industry and semiconductor industry.
論文目次 摘要 I
ABSTRACT II
LIST OF TABLES VI
LIST OF FIGURES VII
CHAPTER 1 INTRODUCTION 1
1.1 RESEARCH OBJECTIVES 1
1.2 PURPOSES 1
1.3 LITERATURE REVIEW 5
CHAPTER 2 MEASUREMENT COMPONENTS 11
2.1 THE PHOTOELECTRIC DETECTOR 11
2.2 THE LASER SOURCE 13
CHAPTER 3 THE STRUCTURE AND MEASUREMENT PRINCIPLE OF PHOTOELECTRIC CALIBRATION SYSTEM 15
3.1 THE LINEAR GUIDEWAY ASSEMBLY GEOMETRIC ERROR CALIBRATION SYSTEM 15
3.1.1 Measurement principles 16
3.1.2 Pentaprism module 16
3.1.3 Straightness measurement module 21
3.1.4 Perpendicularity measurement module 22
3.1.5 Parallelism measurement module 24
3.2 THE PHOTOELECTRIC MACHINE TOOLS DUAL-AXIS STRAIGHTNESS ERROR MEASUREMENT SYSTEM 26
3.2.1 Dual-Axis Measurement System 26
3.2.2 System Configuration 27
3.2.3 Measurement Principle 30
3.3 THE PHOTOELECTRIC ROTARY-AXIS ANGULAR ERRORS CALIBRATOR FOR MULTI-AXIS MACHINE TOOLS 33
3.3.1 Overall System Layout 33
3.3.2 Principles of the proposed system 37
CHAPTER 4 THE VERIFICATION OF PHOTOELECTRIC CALIBRATION SYSTEM 39
4.1 THE VERIFICATION OF LINEAR GUIDEWAY ASSEMBLY GEOMETRIC ERROR CALIBRATION SYSTEM 39
4.1.1 Uncertainty analysis 39
4.1.2 Laser source setup 39
4.1.3 PSD setup 40
4.1.4 Pentaprism setup 41
4.2 THE VERIFICATION OF PHOTOELECTRIC MACHINE TOOLS DUAL-AXIS STRAIGHTNESS ERROR MEASUREMENT SYSTEM 44
4.2.1 Uncertainty analysis 44
4.2.2 Vibration error of the laser source 44
4.2.3 PSD setup error 46
4.2.4 Uncertainty of dual-axis measurment 47
4.3 THE VERIFICATION OF PHOTOELECTRIC ROTARY-AXIS ANGULAR ERRORS CALIBRATOR FOR MULTI-AXIS MACHINE TOOLS 51
4.3.1 Initial set-up error analysis of the eccentricity of the proposed optical rotary-axis calibrator 51
CHAPTER 5 EXPERIMENT RESULTS AND DISCUSSION 53
5.1 EXPERIMENT RESULT AND DISCUSSION OF PHOTOELECTRIC LINEAR GUIDEWAY ASSEMBLY GEOMETRIC ERROR CALIBRATION SYSTEM 53
5.1.1 Altitude angle between laser source and pentaprism 53
5.1.2 Straightness measurement 54
5.1.3 Perpendicularity measurement 56
5.1.4 Parallelism measurement 57
5.1.5 Application of proposed system 60
5.2 EXPERIMENT RESULT AND DISCUSSION OF PHOTOELECTRIC MACHINE TOOLS DUAL-AXIS STRAIGHTNESS ERROR MEASUREMENT SYSTEM 64
5.2.1 Verification of vertical straightness measurements 64
5.2.2 Verification of the flatness measurement system 68
5.3 EXPERIMENT RESULT AND DISCUSSION OF ROTARY-AXIS ANGULAR ERRORS CALIBRATOR FOR MULTI-AXIS MACHINE TOOLS 71
5.3.1 Calibration test of the proposed optical rotary-axis calibrator 71
5.3.2 Error measurement of five-axis machine tool using the proposed optical rotary-axis calibrator 75
CHAPTER 6 CONCLUSION AND FUTURE WORKS 81
6.1 CONCLUSION 81
6.2 FUTURE WORKS 83
REFERENCES 84
參考文獻 [1] G.E. Sommargren, “Linear/Angular Displacement Interferometer for Wafer Stage Metrology”. Proc. SPIE 1989, 1088, 268–273.
[2] O. Nakamura, M. Goto, “Four-beam laser interferometry for three-dimensional microscopic coordinate measurement” Appl. Opt. 1994, 33, 31–36.
[3] C.W. Lee, S.W. Kim, “An ultraprecision stage for alignment of wafers in advanced microlithography”. Precis. Eng. 1997, 21, 113–122.
[4] C.H. Menq, J.H. Zhang, J. Shi, “Design and development of an interferometer with improved angular tolerance and its application to x–y theta measurement” Rev. Sci. Instrum. 2000, 71, 4633–4638.
[5] Z. Zhang, C.H. Menq, “Laser interferometric system for six-axis motion measurement” Rev. Sci. Instrum. 2007, 78, 1–8.
[6] C.H. Liu, W.Y. Jywe, Y.R. Jeng, T.H. Hsu, Y.T. Li, “Design and control of a long-traveling nano-positioning stage” Precis. Eng. 2010, 34, 497–506.
[7] J. Ni, P.S. Huang, S.M. Wu, “A Multi-Degree-of-Freedom Measuring System for CMM Geometric Errors” J. Eng. Ind. 1992, 114, 362–369.
[8] P.S. Huang, J. Ni, “On-line error compensation of coordinate measuring machines” Int. J. Mach. Tools Manuf. 1995, 35, 725–738.
[9] S. Shimizu, H.S. Lee, N. Imai, “Simultaneous Measuring Method of Table Motion Error in 6 Degrees of Freedom” Int. J. Jpn. Soc. Precis. Eng. 1994, 28, 273–274.
[10] C. Chou, L.Y. Chou, C.K. Peng, Y.C. Huang, K.C. Fan, “CCD-based CMM Geometrical error measurement using fourier phase shift algorithm” Int. J. Mach. Tools Manuf. 1997, 37, 579–590.
[11] K.C. Fan, M.J. Chen, W.M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages” Int. J. Mach. Tools Manuf. 1998, 38, 155–164.
[12] K.C. Fan, Y. Zhao, “A laser straightness measurement system using optical fiber and modulation techniques” Int. J. Mach. Tools Manuf. 2000, 40, 2073–2081.
[13] W.Y. Jywe, C.J. Chen, W.H. Hsieh, P.D. Lin, H.H. Jwo, T.Y. Yang, “A novel simple and low cost 4 degree of freedom angular indexing calibrating technique for a precision rotary table” Int. J. Mach. Tools Manuf. 2007, 47, 1978–1987.
[14] F.L. You, Q.B. Feng, B. Zhang, “Straightness error measurement based on common-path compensation for laser beam drift” Opt. Precis. Eng. 2011, 19, 515–519.
[15] W.Y. Jywe, T. H. Hsu, C.H. Liu, “Non-bar, an optical calibration system for five-axis CNC machine tools” Int. J. Mach. Tools Manuf. 2012, 59, 16–23.
[16] P. Huang, Y. Li, H. Wei, L. Ren, S. Zhao, “Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique” Appl. Opt. 2013, 52, 6607–6615.
[17] B.Y.; Chen, B. Xu, L.P. Yan, E.Z. Zhang, Y.N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters” Opt. Express 2015, 23, 9052–9073.
[18] H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, F. Delbressine, “Geometric error measurement and compensation of machines—An update”. CIRP Ann. 2008, 57, 660–675.

[19] K.C. Fan, M.J. Chen, “A 6-degree-of-freedom measurement system for the accuracy of X-Y stages” Precis. Eng. 2000, 24, 15–23.
[20] S.T. Lin, “A laser interferometer for measuring straightness” Opt. Laser Technol. 2001, 33, 195–199.
[21] Q. Feng, B. Zhang, C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module” Opt. Laser Technol. 2004, 36, 279–283.
[22] C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module” Sens. Actuators A Phys. 2005, 125, 100–108.
[23] J. Hwang, C.H. Park, W. Gao, S.W. Kim, “A three-probe system for measuring the parallelism and straightness of a pair of rails for ultra-precision guideways” Int. J. Mach. Tools Manuf. 2007, 47, 1053–1058.
[24] S. Iqbal, M.M.S. Gualini, A. Asundi, “Measurement accuracy of lateral-effect position-sensitive devices in presence of stray illumination noise” Sens. Actuators A Phys. 2008, 143, 286–292.
[25] P. Huang, Y. Li, H. Wei, “Straightness measurement system based on phase sensitive detection technique”. In Proceedings of the 2013 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, Beijing, China, 17–19 November 2013; Volume 9046.
[26] O. Borisov, S. Fletcher, A. Longstaff, A. Myers, “Performance evaluation of a new taut wire system for straightness measurement of machine tools” Precis. Eng. 2014, 38, 492–498.
[27] W. Liu, Q. Feng, C. Cui, “The application of fiber-coupled LED in straightness measurement” In Proceedings of the 2015 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, Beijing, China, 17–19 May 2015; Volume 9623.
[28] W.L. Feng, X.D. Yao, A. Azamat, J.G. Yang, “Straightness error compensation for large CNC gantry type milling centers based on B-spline curves modeling” Int. J. Mach. Tools Manuf. 2015, 88, 165–174.
[29] M. Ikram, G. Hussain, “Michelson interferometer for precision angle measurement” Applied Optics, Vol. 38, Issue 1, pp. 113-120, (1999).
[30] J. Yuana, X. Long, “CCD-area-based autocollimator for precision small-angle measurement” Review of Scientific Instruments, Vol. 74, Issue 3, pp. 1362-1365, (2003).
[31] C.H. Liu, W.Y. Jywe, L.H. Shyu, C.J. Chen, “Application of a diffraction grating and position sensitive detectors to the measurement of error motion and angular indexing of an indexing table” Precision Engineering, Vol. 29, Issue 4, pp. 440-480, (2005).
[32] C.H. Liu, W.Y. Jywe, C.K. Chen, “Development of a simple system for the simultaneous measurement of pitch, yaw and roll angular errors of a linear stage”, The International Journal of Advanced Manufacturing Technology, Vol. 26, No. 7, pp. 808-813, (2005).
[33] Huang, H.L., Liu, C.H., Jywe, W.Y., Wang, M.S. and Fang, T.H., “Development of a Three-Degrees-of-Freedom Laser Linear Encoder for error measurement of a High Precision Stage,” Rev. Sci. Instrum., Vol. 78, Issue 6, Article 066103, pp.1-3, (2007).
[34] Liu, C.H., Jywe, W.Y., Hsu, C.C., Hsu, T.H., “Development of a laser-based high-precision six-degree-of-freedom motion errors measurement system for linear stage” Rev. Sci. Instrum., Vol. 76, (2005).
[35] C.H. Liu, H.L. Huang, H.W. Lee, “Five-degrees-of-freedom diffractive laser encoder,” Applied optics, Vol. 49, Issue 14, pp.2767-2777, (2009).
[36] H.L. Huang, C.H. Liu, W.Y. Jywe, M.S. Wang, “High resolution three-degrees-of-freedom motion errors measuring system for a single-axis linear moving platform” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 223, pp.107-114, (2009).
[37] H.L. Huang, C.H. Liu, W.Y. Jywe, M.S. Wang, Y.R. Jeng, L. Duan, T.H. Hsu, “Development of a DVD pickup-based four-degree-of-freedom motion error measuring system for single-axis linear moving platform” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 224, pp.37-50, (2010).
[38] P.Y. Chen, W.Y. Jywe, M.S. Wang, “Development of a Precision Linear and Rotary Stage Technique” Journal of the Chinese Society of Mechanical Engineers, Vol.38, No.2, pp173~178(2017)
[39] W. Gao, Y. Saito, H. Muto, Y. Arai, Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage” CIRP Annals -Manufacturing Technology, Vol. 60, Issue 1, pp. 515-518, (2011).
[40] W.Y. Jywe, C.H. Liu, T.H. Hsu, “Non-bar, an optical calibration system for five-axis CNC machine tools” International Journal of Machine Tools & Manufacture, Vol. 59, pp. 16-23, (2012).
[41] K. Li, C. Kuang, X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle” Review of Scientific Instruments, Vol. 84, Issue 1, Article 015108, pp. 1-7, (2013).
[42] F.E.P Arellano, H. Panjwani, L. Carbone, C.C. Speake, “Interferometric measurement of angular motion” Review of Scientific Instruments, Vol. 84, Issue 4, Article 043101, pp. 1-11, (2013).
[43] T.H. Hsieh, P.Y. Chen, W.Y. Jywe, G.W. Chen, M.S. Wang, "A Geometric Error Measurement System for Linear Guideway Assembly and Calibration", Appl. Sci. 2019, 9(3), 574.
[44] T.H. Hsieh, W.Y. Jywe, S.L. Chen, C.H. Liu, H.L. Huang, “Note: Development of a high resolution six-degrees-of-freedom optical vibrometer for precision stage” Rev. Sci. Instrum. 2011, 82, 056101.
[45] W. Gao, Y. Arai, A. Shibuya, S. Kiyono, C.H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage” Precis. Eng. 2006, 30, 96–103.
[46] W.Y. Jywe, T.H. Hsieh, P.Y. Chen, M.S. Wang, "An Online Simultaneous Measurement of the Dual-Axis Straightness Error for Machine Tools", Appl. Sci. 2018, 8(11), 2130.
[47] T.H. Hsieh, W.Y. Jywe, H.L. Huang, S.L. Chen, “Development of a laser-based measurement system for evaluation of the scraping workpiece quality” Opt. Laser Eng. 2011, 49, 1045–1053.
[48] P.Y. Chen, H.L. Huang, W.Y. Jywe, M.S. Wang, "Measurement of the angular errors of a multi-axis machine tool by using a novel optical rotary-axis calibrator", JCSME, 2019, 40 (1), 55-62.
[49] H.L. Huang, W.Y. Jywe, C.H. Liu, L. Duan, M.S. Wang, “Development of a novel laser-based measuring system for the thread profile of ballscrew” Opt. Laser Eng. 2010, 48, 1012–1018.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw