進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1208201618352700
論文名稱(中文) 高階核廢料深層處置場之圍岩熱傳異向性分析
論文名稱(英文) Anisotropic thermal analysis of the high-level nuclear waste in final geological repositories
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 林佩瑤
研究生(英文) Pei-Yao Lin
電子信箱 yao922108@gmail.com
學號 N46031067
學位類別 碩士
語文別 英文
論文頁數 100頁
口試委員 口試委員-李德河
口試委員-壽克堅
口試委員-廖志中
指導教授-陳昭旭
中文關鍵字 高放射性廢棄物  深地層處置  熱傳  異向性  解析解 
英文關鍵字 deep geological disposal  anisotropy  numerical verification  thermal conductivity 
學科別分類
中文摘要 經過了國際間無數年的研究與發展,技術上廣泛的一致認為深地質處置提供相對足夠的空間容納大量多年積累的高放射性廢棄物,不論現在或未來對於人類及所居住的環境將較能提供安全性的保障。但是到目前為止尚未有國家正式開始實施深地質處置場的建造,多半都還處在研究評估階段,持續多方面地研究地下處置場岩體的條件與狀況。然而大多數的研究都將地下深層岩體視為均質且等向,但在實際情況下,深層岩體其實為異質且具有異向性的。此外,多數為具有熱傳的異向性,這表示在不同方向上具有不同的熱傳導性。
因此,在本研究中我們延伸了先前Salama A.等人在2015年的研究,進行高放射性廢棄物在深地層處置場岩體的熱傳特性分析,包括考慮了圍岩的熱傳異向性。我們發現高放射性廢棄物置入深地層處置場後周圍的岩體的熱傳異向性差異可能對溫度場有明顯的影響。我們研究了岩體傾角對溫度場的影響,包括0⁰、15⁰、30⁰、45⁰、60⁰、75⁰和90⁰ 並且與等向性案例做對比參考。除了岩體傾角的考量,本研究同時考慮了不同異向性比對溫度場的影響,異向性比從1.1到1.5並且與等向性做比較。本研究與先前的研究最大的差異在於我們在異向性的數值模擬之前有進行與解析解的驗證,並且將模擬分析的結果整理製作成圖,內容為圍岩與緩衝材料在不同異向比與不同傾角下所對應的溫度與100⁰C的溫度限制的關係,提供給後人做為高放射性廢棄物岩體熱傳異向性這方面的參考。
為了確保數值模擬的可行性與準確度,在進行熱傳異向性案例的數值模擬之前,本研究與瑞典SKB公司在2009年的技術報告中所提出的解析解方法做驗證,經過驗證後結果顯示兩種方法的總體趨勢一致。因此,本研究將以相同的數值模型套用在熱傳異向性的模擬分析中。
在本研究中發現整體溫度的分布會隨著岩體傾角的方向轉動,且所有異向性的案例溫度皆高於等向性岩體的溫度,此外,當岩層傾角越大時緩衝材料的最高溫度也越高,反之亦然;同樣地,當岩層異向性比越大時緩衝材料最高溫度也越高。模擬分析之後本研究整理了不同異向性比與不同傾角所對應的緩衝材料最高溫度的圖表,並發現當異向性比從1.1增加到為1.3時,緩衝材料的最高溫度會達到100⁰C的設計限制。此圖表可提供後人研究高放射性廢棄物深層處置場的熱傳異向性的參考之用。
英文摘要 After numerous years of international research and development, there is a broad technical consensus that deep geological disposal which offers relatively enough space to accommodate the large volume of HLW accumulated over the years will provide for the safety of humankind and the environment now and far into the future. In addition, there is not yet an operating geological repository for high-level radioactive waste, and there remains substantial public research about the underground rock mass of geological repository. However, most studies all consider the host rock as homogeneous and isotropic. While in real cases, underground host rock is inherently anisotropic and heterogeneous. Besides, many of them are thermally anisotropic, indicating that there is a preferred direction of thermal conductivity.
Therefore, in this thesis, we extend the previous research (Salama A. et al., 2015) conducted to analyze thermal characteristics of HLW geological repositories by including the effect of anisotropy of thermal conductivity of host rock. We reveal that differences in anisotropy of thermal conductivity of host rock with direction could have clear effects on temperature fields. We also investigate the effect of dip angle on the temperature field. This includes 0⁰, 15⁰, 30⁰, 45⁰, 60⁰, 75⁰and 90⁰ in additions to the isotropic case as a reference. Furthermore, we also consider the effect of anisotropy ratio on the temperature fields. This includes ratios ranging from 1.1 to 1.5. The significant differences between this study with previous research are that we conducted the verification with analytical approach before the numerical simulation and also developed a chart for variation of peak rock wall temperature with the anisotropy ratio for different dip angles which can be used as an anisotropic case for HLW repositories reference.
In order to ensure feasibility and accuracy of the numerical model, we conduct the numerical verification with analytical approach proposed by SKB (2009) before the thermal simulation for anisotropic cases. The results of both approaches show pretty much the same overall trends. As a result, after the verification, the same numerical model is feasibly used for the next anisotropic simulation.
In this study, it is found that the temperature contours are shifted towards the direction of dip angle. The temperature of anisotropic cases are all high than isotropic one. Furthermore, the peak buffer temperature is found to be higher when the dip angle is larger and vice versa. Additionally, the peak buffer temperature is also found to be higher when anisotropic ratio is larger. Also we developed a chart of variation of peak buffer temperature with the anisotropy ratio for different dip angles and find that the peak buffer temperature meets the 100℃ design limit when anisotropy ratio is set to 1.3. The presented chart can be used as an anisotropic case for HLW repositories reference.
論文目次 CONTENTS
Abstract...I
中文摘要...III
致謝...V
List of Tables...IX
List of Figures...XI
Chapter 1 Introduction...1
1.1 Background and Motivation...1
1.2 Objectives of the study...4
1.3 Layout of the thesis...5
Chapter 2 Literature Review...7
2.1 Historical overview of backfilled EBS design concept...7
2.2 Thermal properties of rock...14
2.2.1 Thermal conductivity of rocks and minerals...14
2.2.2 Conductivity anisotropy of metamorphic rocks...15
2.2.3 Rock conductivity change with temperature...18
2.3 Reference design of the buffer...22
2.3.1 Material composition...22
2.3.2 Blocks and pellets...25
2.4 Thermal conductivity and anisotropy of layered oxides ...27
2.4.1 Thermal Conductivity of Oxides...27
2.4.2 Heat Capacity of Oxides...28
2.4.3 Thermal Diffusivity of Oxides...29
2.5 Numerical investigation in anisotropic geologic repositories...32
Chapter 3 Methodology...39
3.1 Simulating Process...40
3.2 Governing Equations...41
3.2.1 Finite Difference Method of Heat Transport Law...41
3.2.2 Decay Heat...47
3.2.3Thermal Anisotropy...48
3.2.4 Effective Thermal Conductivity...50
Chapter 4 Model Construction and Verification...52
4.1 Cases Description...52
4.1.1 Example case: thermal conduction in a plane sheet...52
4.1.2 Canisters in the central part of the panel...55
4.1.3 Canisters in panel edge regions...56
4.2 Construction for Numerical Model (FLAC3D)...58
4.3 Transformation of the Parameters...58
4.4 Verification result of Numerical Model...62
4.4.1 Verification case of canisters in the central part of the panel...62
4.4.2 Verification case of canisters in panel edge regions...68
Chapter 5 Numerical Analysis...77
5.1 Thermal Anisotropy Setting...77
5.2 Results and Discussions...80
5.2.1 Temperature Distribution...80
5.2.2 Variation with peak buffer temperature for anisotropic cases...81
Chapter 6 Conclusions and Suggestions...94
6.1 Conclusion...94
6.2 Suggestions for future work...96
References...97

參考文獻 1.Abdi, H. (2014), Mechanical and hydromechanical behavior of host sedimentary rocks for deep geological repository for nuclear waste Published Doctoral Dissertation, Department of Civil Engineering, University of Ottawa, Canada.
2.Back, P.E. and J. Sundberg, (2007), A strategy for the model development during site investigations – version 2(SKB Technical Report 07-42) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
3.Börgesson, L., A. Fredrikson, and L.E. Johannesson (1994), Heat conductivity of buffer materials(SKB Technical Report TR-94-29) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
4.Colón, C.F.J., F.A. Caporuscio, S.S. Levy, M. Sutton, J.A. Blink, H.R. Greenberg, M. Fratoni, W.G. Halsey, T.J. Wolery, J. Rutqvist, C.I. Steefel, J. Galindez, J. Birkholzer and H.H. Liu (2011), Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation(FCRD-USED-2011-000132), New Mexico: the U.S. Department of Energy‘s National Nuclear Security Administration Press.
5.Francois, B. and L. Laloui (2009),” Behavior of An Engineered Clay Barrier For Nuclear Waste Isolation System”, International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS, CIMNE, Barcelona.
6.Fairhurst, C. (1993), “Geological isolation of radioactive waste: a challenge that must be met” Tunneling and Underground Space Technology, 8 pp. 313-314.
7.Grambow, B. and S. Bretesché (2014), “Geological disposal of nuclear waste: II. From laboratory data to the safety analysis – Addressing societal concerns” Applied Geochemistry, 49 pp.247-258.
8.Giusti, L. (2009), “A review of waste management practices and their impact on human health”, Waste Management, 29 (8) pp.2227-2239.
9.Goblet, P. and G. de Marsily (2003), Evaluation of Heat Propagation from a KBS-3 Type Deep Repository for Aberg, Beberg and Ceberg inSKB'sSR97( SKB Technical Report 07-42) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
10.Hökmark, H., M. Lönnqvist, O. Kristensson, J. Sundberg and G. Hellström (2009), Strategy for thermal dimensioning of the final repository for spent nuclear fuel(SKB Technical Report R-09-04) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
11.Hedin, A. (2004), Integrated near-field evolution(Svensk Kärnbränslehantering AB, SKB Technical Report R-04-36), Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
12.Hökmark, H. and B. Fälth (2003), Thermal dimensioning of the deep repository(SKB Technical Report R-03-09) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
13.Ikonen, K. (2005), Thermal Analysis of Repository for Spent EPR-type fuel, (Working report Posiva 05-06) Finland: Posiva Oy Press.
14.Lee, Y., H.J. Choi, J.Y. Lee, J. Kim and J. Choi (2005), “The Thermal Effect of Gaps in the Engineered Barrier System (EBS) of HLW repository” Proceedings of the KNS spring meeting, Korea Atomic Energy Research Institute, Korea.
15.Lindblom, U. and P. Gnirk (1982), “Nuclear waste disposal: Can we rely on bedrock?” Oxford: Pergamon Press.
16.Midttomme, K., E. Roaldset and P. Aagaard (1998), “Thermal conductivity of selected claystones and mudstones from England”, Clay Minerals, 33 pp.131-145
17.Robertson, E.C. (1988), Thermal Properties of Rocks(Open-File Report 88-441), Virginia: United States Department of The Interior Geological Survey Press.
18.Salama, A., M.F.El Amin and S. Sun (2015), “Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories” Progress in Nuclear Energy 85pp.747-755
19.Won, S.K., W.J. Cho and J.O. Lee (2012), “An analysis of the thermal and mechanical behavior of engineered barriers in a high-level radioactive waste repository”, International journal of Nuclear Engineering and Technology
20.Sparks, T.D. (2010), Thermal Conductivity and Anisotropy of Layered Oxides Published Master Dissertation Department of Science and Materials, University of California, Santa Barbara, U.S.
21.Shafiee, S. and E. Topal. (2009), “When will fossil fuel reserves be diminished?” Energy Policy 37pp.181–189.
22.Sundberg, J. (2003), A strategy for the model development during site investigations( SKB Technical Report R-03-10) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
23.Safanda, J. (1995), “Effect of thermal conductivity anisotropy of rocks on the subsurface temperature field”, Geophys, 120 pp.323-330

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw