進階搜尋


 
系統識別號 U0026-1208201501330300
論文名稱(中文) 多功能型高分子介電材料應用於PTCDI-C13H27 n型感測器、記憶體和電晶體元件
論文名稱(英文) Functional polymer dielectrics applied in PTCDI-C13H27-based sensors, memory, and transistors
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 林益生
研究生(英文) Yi-Sheng Lin
學號 L78971047
學位類別 博士
語文別 英文
論文頁數 102頁
口試委員 指導教授-周維揚
共同指導教授-鄭弘隆
口試委員-唐富欽
口試委員-劉世鈞
口試委員-江海邦
口試委員-陳建亨
中文關鍵字 十三烷基駢苯衍生物  功能型介電層  有機薄膜電晶體  記憶體  感測器  量子化學模擬 
英文關鍵字 PTCDI-C13H27  functional dielectric layer  organic thin-film transistor  memory  sensors  quantum chemical simulation 
學科別分類
中文摘要 本研究分為兩個主要的課題,第一部份為功能型介電層在n型半導體N,N’-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13H27)的光電元件應用。第二部份是利用量子化學模擬的方法,計算分子間耦合能並對不同分子對的參數進行mapping,來快速分析五環素(pentacene)在單位晶格內載子傳輸的異向性及其n型或雙極型(ambipolar)的電特性成因。PTCDI-C13H27是一種具有高電子載子遷移率的有機半導體材料,常被用來作為n型光電元件的主動層。第一部份的研究被分為三個主要的方向,分別是研究(一) 在利用具強及弱電耦(dipole)的介電層材料所製作的PTCDI-C13H27有機薄膜電晶體中發現的時間相依的電流增益現象,(二) PTCDI-C13H27嵌入式元件光電特性及(三)使用酚類電駐極層製作具光致記憶效應的PTCDI-C13H27記憶體元件。
本論文第一部份的第一個課題是探討第一個在n型電晶體元件發現的時間相依電流增益效應。大部份有機電晶體元件在操作時受到偏壓應力(bias stress)影響,其工作電流會隨時間下降。但本研究發現一個以PI (polyimide)為介電層製作的n型電晶體在長時間操作時,不但沒有電滯效應還有產生電流增益之現象。這個現象主要由三個因素所造成,(一) 是在介電層與主動層之間的缺陷密度(trap state density)較低,(二) PI中的電偶產生閘極場增益及(三) 低缺陷生命期。這種PI介電層材料適合應用在要求穩定操作的電晶體元件上。
本論文第一部份的第二個課題是關於嵌入式光感測電晶體元件的應用。嵌入式光感測電晶體包含兩種相同製程的元件;一個作為光感測器,另一個作為開關電晶體。我們使用以交聯式聚(4-乙基苯酚) (cross-linked poly(4-vinylphenol), C-PVP)為介電層及絕緣層材料,並以聚醚碸 (polyethersulfone, PES)基板製作可低壓操作的軟性PTCDI-C13H27嵌入式元件,研究其光電特性。研究發現當光感測器電晶體操作在臨界電壓附近時有最佳的操作電流比。此外,我們研究開關電晶體操作在不同彎曲曲率下的電性變化,並利用光激螢光光譜,時間解析光激螢光光譜和量子化學計算等方法,分析元件在彎曲狀態下造成電性變化的原因。
本論文第一部份的第三個課題是有關光致記憶體效應的研究。本研究使用C-PVP為電駐極層的PTCDI-C13H27記憶體元件,發現利用532 nm 雷射光源作為寫入光源照射元件兩分鐘後可產生長時間的記憶效應。這個效應主要來自兩個電偶極的貢獻,分別是強瞬時誘發電偶極及半永久誘發電偶極。強瞬時誘發電偶極是由於532 nm 雷射照射PTCDI-C8H17分子對(PTCDI家族之一)時,當分子對從基態跳到激發態的過程所產生,其強度根據量子化學模擬計算結果高達27.9 D。當強瞬時誘發電偶極發生時會對具有酚類或酚類官能基的電駐極層產生半永久誘發電偶極而達成記憶效果。我們使用4種相似的電駐極層材料poly(4-vinylphenol) (PVP), poly(styrene) (PS), poly(vinyl alcohol) (PVA), and PS參入1 wt% 鄰苯二酚(1,2-dihydroxybenzene, catechol),製作記憶體元件。驗証了只有具有酚類或酚類官能基的電駐極層可以發現光致記憶體效應。
本論文第二部份是使用量子化學模擬的方法,研究不同晶相的pentacene分子團中pentacene受外圍pentacene分子的空間限制及晶格外圍分子力場交互作用條件下的再組織能及耦合能,來了解pentacene的本質特性及載子傳輸的異向性及其n型或ambipolar的特性成因。我們發現pentacene晶相變化對於耦合能的影響遠大於再組織能,因此我們對pentacene分子對的傾斜角(tilt angle)及邊-面角(edge to face)進行mapping,做更全面的分析。mapping研究結果發現分子對的傾斜角及邊-面角主導pentacene n型或p型的載子遷移率。在一些已知的pentacene晶相中,其n型或p型的載子遷移率其實是匹配甚至n型超越p型載子遷移率。這解釋了在傳統上是p型半導體的pentacene可以呈現n型或ambipolar的特性。
英文摘要 This thesis focuses on the applications of N,N’-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13H27)-based optoelectronic devices and the evaluation of anisotropic charge transport capability in a pentacene cluster via electronic coupling energy mapping using quantum chemical calculation. PTCDI-C13H27 is a potential n-type organic semiconductor with high electron mobility. In this thesis, the applications of PTCDI-C13H27-based optoelectronic devices are grouped into three subjects, with particular focus on functional dielectric layers for organic thin-film transistors (OTFTs). The three subjects are (a) the time-dependent current growth phenomenon of PTCDI-C13H27-based OTFTs using a dielectric buffer layer consisting of strong and weak dipole units, (b) the optoelectronic properties of PTCDI-C13H27-based OTFTs, which include a switch OTFT and a sensor OTFT, with potential for use in in-cell devices, and (c) a photoinduced memory effect in PTCDI-C13H27-based OTFTs through phenolic dielectric buffer layers. Besides, charge transport capability of pentacene in various crystal polymorphisms was also discussed in the thesis by quantum chemical calculation.
In the first part of this thesis, we describe an unusual phenomenon of time-dependent current growth that was first observed in OTFTs, particularly n-type transistors. We obtained the time-dependent growth of the drain current and nearly hysteresis-free electricity under DC bias stress for PTCDI-C13H27-based OTFTs with a polyimide (PI) dielectric layer. These phenomena are attributed to (a) a reduction in trap state density located at the interface between the PI layer and semiconductor, (b) the effective gate field enhanced by electric dipoles within the PI, and (c) a low interface trap lifetime. A polymer dielectric with moderate polar groups is suitable for application in stable organic devices.
In the second part, we demonstrated that the control of the operating voltage for OTFT-based photosensors (photo-OTFT) is an essential factor that can enhance the photocurrent/dark current ratio (P). This phenomenon is due to the reduction of the contribution of field-effect current to output current under dark state. In this study, we analyzed a highly sensitive, flexible, organic photosensor made from cross-linked poly(4-vinylphenol) (C-PVP) as a polymer dielectric layer and PTCDI-C13H27 as an n-type active layer on a transparent polyethersulfone (PES) substrate, by tuning both source-drain and source-gate voltages to the neighbor of threshold voltage (Vt = 3.0 V). Interestingly, a maximum P was obtained when the operating voltage was reduced to around Vt. The time-response characteristics and sensitivity of the PTCDI-C13H27-based photosensor were clearly investigated. Considerable interest has been given to the flexible in-cell remote touch screen that comprises both photosensitive and switch OTFTs. In this work, both OTFT-based switch (switch-OTFT) and photo-OTFT were shown to form on the flexible PES substrate using the same fabrication process. The electrical characteristics of switch-OTFT under bending states were discussed in terms of photoluminescence and time-resolved photoluminescence measurements, as well as quantum theory calculations.
In the third part, we discussed our discovery on the photoinduced phenomenon of current enhancement and memory effect, in which was discovered in a PTCDI-C13H27-based OTFT structure of non-volatile memory (NVM) devices. This phenomenon was observed after illumination with 532 nm laser for 2 min. The C-PVP electret layer, which consists of hydroxyphenyl group was assembled in NVM. The retention of photoinduced memory effect in C-PVP-based NVM was more than 1 day. Two kinds of dipoles, namely, instantaneously strong and quasi-permanent, caused the photoinduced memory effect in C-PVP-based NVM. An instantaneously strong dipole (27.9 D) was introduced by the excitation process of PTCDI-C8H17 dimer (a derivative of PTCDI family). The quasi-permanent dipole in C-PVP electret layer was generated and aligned by the instantaneously strong dipole. The accumulated charge varied with electric field, time-dependent capacitance measurement, and quantum chemical simulation, which were used to analyze the photoinduced memory effect. To further verify whether the hydroxyphenyl group is the key factor of photoinduced memory effect in NVM, we employed four types of electret layers [poly(4-vinylphenol) (PVP), poly(styrene) (PS), poly(vinyl alcohol) (PVA), and PS doped with 1 wt% 1,2-dihydroxybenzene (catechol)] to fabricate NVMs. Results indicated that only the electret of NVMs had hydroxyphenyl group or similar group, and the photoinduced memory effect could be observed. The results in this study could be used as reference in designing electret materials for photoinduced n-type NVMs.
In the fourth part, We proposed an approach for evaluating the charge transport capability of pentacene molecules in various crystal polymorphisms in the framework of Marcus theory of electron-transfer reactions. Crystal-induced reorganization energy (reg) and electronic coupling energy (J), which are the key factors that determine charge hopping mobility in various molecular configurations of crystal clusters, are calculated by using quantum chemical calculation. In particular, we examined the effects of the edge-to-face angle (ef) and tilt angles (tilt) of pentacene molecules in crystal clusters on charge mobility because the two parameters are difficult to determine experimentally. In addition to the effects of lattice constants, we found that tilt and ef exert a large impact on the charge mobility capability of pentacene in various crystal polymorphisms. Our mapping results provide a complete understanding of crystal-induced ambipolar transport capability of pentacene molecules. We highlight that the electron mobility of pentacene molecules are possibly as fast as hole mobility, i.e., balanced ambipolar transport, unlike the previous idea of hole-dominated transport.
論文目次 Abstract I
中文摘要 IV
誌謝 VI
Contents VII
Index of Tables XII
Index of Figures XIII
Symbols XVIII
Chapter1 Introduction 1
1.1 Introduction 1
1.1.1 History of Organic semiconductors 1
1.1.2 Development of n-type organic thin-film transistors 1
1.2 Research motivation and thesis organization 5
1.3 Principles of OTFT operation and charge transfer mechanism 9
1.3.1 Typical organic field-effect transistors 9
1.3.2 Operation of OTFT devices 9
1.4 Sensitivity and Responsivity of photosensor. 11
1.5 Charge transfer mechanism of organic semiconductors 12
1.5.1 Hopping mobility 12
1.5.2 Reorganized energy 15
1.5.3 Electronic coupling energy 17
Chapter2 Experimental section 19
2.1 Initial Time-dependent Current Growth Phenomenon in n-Type Organic Transistors Induced by Interfacial Dipole Effects 19
2.1.1 PI Synthesis: 19
2.1.2 Quantum chemical calculations: 20
2.1.3 Device fabrication and analyses: 20
2.1.4 PTCDI-C13H27 synthesis 21
2.2 Light sensing in photosensitive, flexible n-type organic thin-film transistors 23
2.2.1 Thin-film formation and device fabrication. 23
2.2.2 Photo-OTFT characteristics measurement 24
2.2.3 Switch-OTFT characteristics measurement 24
2.2.4 Optical property analyses of PTCDI-C13H27 thin films at bending states 24
2.2.5 Quantum chemical calculations 25
2.3 Photoinduced Memory Effect in Organic Non-Volatile Organic Memory Devices 26
2.3.1 Electret layer preparation 26
2.3.2 Quantum chemical calculation 27
2.3.3 Device fabrication and measurement 27
2.4 Systematic mapping of crystal-induced anisotropic charge transfer properties in pentacene 28
2.4.1 Crystal-induced reorganized energy of pentacene 28
2.4.2 Electronic coupling energy mapping 28
2.4.3 Mapping Jobs 29
Chapter3 Initial Time-dependent Current Growth Phenomenon in n-Type Organic Transistors Induced by Interfacial Dipole Effects 31
3.1 Introduction 31
3.2 Results and discussion 33
3.2.1 Electrical characteristics of OTFTs with different dielectric materials 33
3.2.2 Interface traps density and surface free energy 36
3.2.3 Dipole effect in dielectric buffer layer 39
3.3 Summary 42
Chapter4 Light sensing in photosensitive, flexible n-type organic thin-film transistors 43
4.1 Introduction 43
4.2 Results and Discussion 45
4.2.1 In-cell flexible device 45
4.2.2 Electrical characteristic of photo-OTFT 46
4.2.3 Time-dependent analysis for photo-OTFT 49
4.2.4 Threshold voltage shift and maximum photocurrent/dark current ratio of photo-OTFT 51
4.2.5 Electrical characteristic of switch-OTFT in bending states 52
4.2.6 Observation of intermolecular distant changed in bending states by PL and TR-PL 54
4.3 Summary 58
Chapter5 Photoinduced Memory Effect in Organic Non-Volatile Organic Memory Devices 59
5.1 Introduction 59
5.2 Results and discussion 60
5.2.1 Electrical characteristic of the photo-writable NVM 60
5.2.2 Dipoles for photoinduced memory effect 63
5.2.3 Quantum chemical calculation for photoinduced dipole 65
5.2.4 Photo-writing efficiency for C-PVP-based NVM 67
5.2.5 NVMs fabricated by different polymer of electrets 68
5.3 Summary 71
Chapter6 Systematic mapping of crystal-induced anisotropic charge transport capability in pentacene 73
6.1 Introduction 73
6.2 Result and discussion 74
6.2.1 Crystal-induced reorganized energy of pentacene calculated in a cluster 74
6.2.2 Electronic coupling energy of pentacene dimers in different crystal polymorphisms 74
6.2.3 Mapping results of electronic coupling energy 77
6.2.4 Anisotropic hopping mobility in different crystal polymorphisms of pentacene. 81
6.3 Summary 84
Chapter7 Conclusion and Outlook 85
Reference 89
Appendix 99
List of abbreviations 99
List of publications 101
參考文獻 [1] F. Goppelsroeder. Studien über die Anwendung der Elektrolyse zurDarstellung, zur Veränderung und zur Zerstörung der Farbstoe ohne oderin Gegenwart von vegetabilischen oder animalischen Fasern. Elektrotechnische Rundschau 19:1047–1051 (1891).
[2] H. A. Pohl: “Electronic Behavior of Organic Macromolecular Solids,” B. A. Bolto: “Semiconducting Organic Polymers Containing Metal Groups,” D. D. Eley: “Semiconducting Biological Polymers,” in J. E. Katon (ed.): Organic Semiconducting Polymers, Marcel Dekker, New York 1968.
[3] H. Naarmann, "Polymers, Electrically Conducting". Ullmann's Encyclopedia of Industrial Chemistry. 29, 295 (2000).
[4] W. A. Little, "Possibility of Synthesizing an Organic Superconductor" Phys. Rev. 134, A1416 (1964).
[5] http://smithsonianchips.si.edu/proctor/index.htm
[6] H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger,"SYNTHESIS OF ELECTRICALLY CONDUCTING ORGANIC POLYMERS - HALOGEN DERIVATIVES OF POLYACETYLENE, (CH)X", J Chem Soc Chem Comm, 578 (1977).
[7] A. J. Heeger,"Semiconducting and metallic polymers: The fourth generation of polymeric materials", J Phys Chem B, 105, 8475 (2001).
[8] H. Shirakawa,"The discovery of polyacetylene film: The dawning of an era of conducting polymers (Nobel lecture)", Angew Chem Int Edit, 40, 2575 (2001).
[9] A. G. MacDiarmid,""Synthetic metals": A novel role for organic polymers (Nobel lecture)", Angew Chem Int Edit, 40, 2581 (2001).
[10] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend,"General observation of n-type field-effect behaviour in organic semiconductors", Nature, 434, 194 (2005).
[11] Y. B. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. H. Chen, D. Nordlund, M. F. Toney, J. S. Huang, Z. N. Bao,"Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method", Nature Communications, 5, 3005 (2014).
[12] G. Horowitz, F. Kouki, P. Spearman, D. Fichou, C. Nogues, X. Pan, F. Garnier,"Evidence for n-type conduction in a perylene tetracarboxylic diimide derivative", Adv Mater, 8, 242 (1996).
[13] K. Zhou, H. L. Dong, H. L. Zhang, W. P. Hu,"High performance n-type and ambipolar small organic semiconductors for organic thin film transistors", Phys Chem Chem Phys, 16, 22448 (2014).
[14] X. Gao, Y. Hu,"Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design", Journal of Materials Chemistry C, 2, 3099 (2014).
[15] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, W. Andreoni,"N-type organic thin-film transistor with high field-effect mobility based on a N,N'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative", Appl Phys Lett, 80, 2517 (2002).
[16] R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da Silva, J. L. Bredas, L. L. Miller, K. R. Mann, C. D. Frisbie,"Organic thin film transistors based on N-alkyl perylene diimides: Charge transport kinetics as a function of gate voltage and temperature", J Phys Chem B, 108, 19281 (2004).
[17] S. Tatemichi, M. Ichikawa, T. Koyama, Y. Taniguchi,"High mobility n-type thin-film transistors based on N,N'-ditridecyl perylene diimide with thermal treatments", Appl Phys Lett, 89, 112108 (2006).
[18] J. Soeda, T. Uemura, Y. Mizuno, A. Nakao, Y. Nakazawa, A. Facchetti, J. Takeya,"High Electron Mobility in Air for N,N '-1H,1H-Perfluorobutyldicyanoperylene Carboxydi-imide Solution-Crystallized Thin-Film Transistors on Hydrophobic Surfaces", Adv Mater, 23, 3681 (2011).
[19] H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, Z. Bao,"High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C60 Single Crystals", J Am Chem Soc, 134, 2760 (2012).
[20] T. He, M. Stolte, F. Wuerthner,"Air-Stable n-Channel Organic Single Crystal Field-Effect Transistors Based on Microribbons of Core-Chlorinated Naphthalene Diimide", Adv Mater, 25, 6951 (2013).
[21] C. Kanimozhi, N. Yaacobi-Gross, K. W. Chou, A. Amassian, T. D. Anthopoulos, S. Patil,"Diketopyrrolopyrrole-Diketopyrrolopyrrole-Based Conjugated Copolymer for High-Mobility Organic Field-Effect Transistors", J Am Chem Soc, 134, 16532 (2012).
[22] J. H. Park, E. H. Jung, J. W. Jung, W. H. Jo,"A Fluorinated Phenylene Unit as a Building Block for High-Performance n-Type Semiconducting Polymer", Adv Mater, 25, 2583 (2013).
[23] F. Zhang, Y. Hu, T. Schuettfort, C.-a. Di, X. Gao, C. R. McNeill, L. Thomsen, S. C. B. Mannsfeld, W. Yuan, H. Sirringhaus, D. Zhu,"Critical Role of Alkyl Chain Branching of Organic Semiconductors in Enabling Solution-Processed N-Channel Organic Thin-Film Transistors with Mobility of up to 3.50 cm2V-1s-1", J Am Chem Soc, 135, 2338 (2013).
[24] T. Lei, J. H. Dou, X. Y. Cao, J. Y. Wang, J. Pei,"Electron-Deficient Poly(p-phenylene vinylene) Provides Electron Mobility over 1 cm2V-1s-1 under Ambient Conditions", J Am Chem Soc, 135, 12168 (2013).
[25] A. Lv, S. R. Puniredd, J. Zhang, Z. Li, H. Zhu, W. Jiang, H. Dong, Y. He, L. Jiang, Y. Li, W. Pisula, Q. Meng, W. Hu, Z. Wang,"High Mobility, Air Stable, Organic Single Crystal Transistors of an n-Type Diperylene Bisimide", Adv Mater, 24, 2626 (2012).
[26] Z. Liang, Q. Tang, J. Xu, Q. Miao,"Soluble and Stable N-Heteropentacenes with High Field-Effect Mobility", Adv Mater, 23, 1535 (2011).
[27] L. Danqing, X. Xiaomin, S. Yaorong, H. Zikai, X. Jianbin, M. Qian,"Self-Assembled Monolayers of Phosphonic Acids with Enhanced Surface Energy for High-Performance Solution-Processed N-Channel Organic Thin-Film Transistors", Angew. Chem. Int. Ed., 52, 6222 (2013).
[28] M. M. Islam, S. Pola, Y.-T. Tao,"High mobility n-channel single-crystal field-effect transistors based on 5,7,12,14-tetrachloro-6,13-diazapentacene", Chem Commun, 47, 6356 (2011).
[29] S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, Z. N. Bao,"Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers", Nat Mater, 9, 859 (2010).
[30] T. Sekitani, U. Zschieschang, H. Klauk, T. Someya,"Flexible organic transistors and circuits with extreme bending stability", Nat Mater, 9, 1015 (2010).
[31] L. G. De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, C. Zhou,"Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics", Acs Nano, 4, 2865 (2010).
[32] T. H. Han, Y. B. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, T. W. Lee,"Extremely efficient flexible organic light-emitting diodes with modified graphene anode", Nat Photonics, 6, 105 (2012).
[33] S. I. Na, S. S. Kim, J. Jo, D. Y. Kim,"Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes", Adv Mater, 20, 4061 (2008).
[34] B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li,"Large-scale complementary integrated circuits based on organic transistors", Nature, 403, 521 (2000).
[35] C. F. Sung, D. Kekuda, L. F. Chu, F. C. Chen, S. S. Cheng, Y. Z. Lee, M. C. Wu, C. W. Chu,"Hybrid TiOx/fluoropolymer bi-layer dielectrics for low-voltage complementary inverters", Org Electron, 11, 154 (2010).
[36] B. Lee, A. Wan, D. Mastrogiovanni, J. E. Anthony, E. Garfunkel, V. Podzorov,"Origin of the bias stress instability in single-crystal organic field-effect transistors", Phys Rev B, 82, 085302 (2010).
[37] Y. Chen, V. Podzorov,"Bias Stress Effect in "Air-Gap" Organic Field-Effect Transistors", Adv Mater, 24, 2679 (2012).
[38] P. A. Bobbert, A. Sharma, S. G. J. Mathijssen, M. Kemerink, D. M. de Leeuw,"Operational Stability of Organic Field-Effect Transistors", Adv Mater, 24, 1146 (2012).
[39] M. H. Zhang, S. P. Tiwari, B. Kippelen,"Pentacene organic field-effect transistors with polymeric dielectric interfaces: Performance and stability", Org Electron, 10, 1133 (2009).
[40] T. Umeda, D. Kumaki, S. Tokito,"High air stability of threshold voltage on gate bias stress in pentacene TFTs with a hydroxyl-free and amorphous fluoropolymer as gate insulators", Org Electron, 9, 545 (2008).
[41] K. Fukuda, T. Yokota, K. Kuribara, T. Sekitani, U. Zschieschang, H. Klauk, T. Someya,"Thermal stability of organic thin-film transistors with self-assembled monolayer dielectrics", Appl Phys Lett, 96, 053302 (2010).
[42] X. H. Zhang, S. P. Tiwari, S. J. Kim, B. Kippelen,"Low-voltage pentacene organic field-effect transistors with high- HfO2 gate dielectrics and high stability under bias stress", Appl Phys Lett, 95, 223302 (2009).
[43] C. Goldmann, C. Krellner, K. P. Pernstich, S. Haas, D. J. Gundlach, B. Batlogg,"Determination of the interface trap density of rubrene single-crystal field-effect transistors and comparison to the bulk trap density", J Appl Phys, 99, 034507 (2006).
[44] W. L. Kalb, S. Haas, C. Krellner, T. Mathis, B. Batlogg,"Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals", Phys Rev B, 81, 155315 (2010).
[45] J. Veres, S. Ogier, G. Lloyd, D. de Leeuw,"Gate insulators in organic field-effect transistors", Chem Mater, 16, 4543 (2004).
[46] R. Hayakawa, M. Petit, T. Chikyow, Y. Wakayama,"Interface engineering for molecular alignment and device performance of quaterrylene thin films", Appl Phys Lett, 93, 153301 (2008).
[47] S. A. DiBenedetto, A. Facchetti, M. A. Ratner, T. J. Marks,"Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications", Adv Mater, 21, 1407 (2009).
[48] C. A. Di, G. Yu, Y. Q. Liu, Y. L. Guo, X. N. Sun, J. Zheng, Y. G. Wen, W. P. Wu, D. B. Zhu,"Selective Crystallization of Organic Semiconductors for High Performance Organic Field-Effect Transistors", Chem Mater, 21, 4873 (2009).
[49] S. G. J. Mathijssen, M. Kemerink, A. Sharma, M. Coelle, P. A. Bobbert, R. A. J. Janssen, D. M. de Leeuw,"Charge trapping at the dielectric of organic transistors visualized in real time and space", Adv Mater, 20, 975 (2008).
[50] X. Y. Cheng, M. Caironi, Y. Y. Noh, J. P. Wang, C. Newman, H. Yan, A. Facchetti, H. Sirringhaus,"Air Stable Cross-Linked Cytop Ultrathin Gate Dielectric for High Yield Low-Voltage Top-Gate Organic Field-Effect Transistors", Chem Mater, 22, 1559 (2010).
[51] M. Falk, V. Andoralov, Z. Blum, J. Sotres, D. B. Suyatin, T. Ruzgas, T. Arnebrant, S. Shleev,"Biofuel cell as a power source for electronic contact lenses", Biosensors & Bioelectronics, 37, 38 (2012).
[52] D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, R. G. Beausoleil,"A multi-directional backlight for a wide-angle, glasses-free three-dimensional display", Nature, 495, 348 (2013).
[53] J. K. Lee, S. S. Kim, Y. I. Park, C. D. Kim, Y. K. Hwang,"In-cell adaptive touch technology for a flexible e-paper display", Solid State Electron, 56, 159 (2011).
[54] S. E. Ahn, S. Jeon, I. Song, Y. Jeon, Y. Kim, C. Kim, J. Lim, W. Jeong, J. Goh, S. Yeon, C. Lee, J. H. Kim, J. H. Lee, J. Song, A. Nathan, S. Lee and U. I. Chung, "25.2: Photo-Sensor Thin Film Transistor based on Double Metal-Oxide Layer for In-cell Remote Touch Screen" Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp., 43, 334 (2012).
[55] S. Jeon, S. E. Ahn, I. Song, C. J. Kim, U. I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson, K. Kim,"Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays", Nat Mater, 11, 301 (2012).
[56] X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, G. Z. Shen,"High-Performance Organic-Inorganic Hybrid Photodetectors Based on P3HT:CdSe Nanowire Heterojunctions on Rigid and Flexible Substrates", Adv Funct Mater, 23, 1202 (2013).
[57] S. W. Jeong, J. W. Jeong, S. Chang, T. Y. Oh, S. Y. Kang, K. I. Cho, B. K. Ju,"The study of the photo-response characteristics of organic photosensors integrated with pentacene based thin film transistors", Sensor Actuat B-Chem, 156, 657 (2011).
[58] S. Kim, T. Lim, K. Sim, H. Kim, Y. Choi, K. Park, S. Pyo,"Light Sensing in a Photoresponsive, Organic-Based Complementary Inverter", Acs Appl Mater Inter, 3, 1451 (2011).
[59] J. J. Wang, J. S. Hu, Y. G. Guo, L. J. Wan,"Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic-inorganic hybrid photodetectors", Npg Asia Materials, 4, e2 (2012).
[60] K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, D. Y. Kim,"Polarity effects of polymer gate electrets on non-volatile organic field-effect transistor memory", Adv Funct Mater, 18, 3678 (2008).
[61] P. Heremans, G. H. Gelinck, R. Muller, K. J. Baeg, D. Y. Kim, Y. Y. Noh,"Polymer and Organic Nonvolatile Memory Devices", Chem Mater, 23, 341 (2011).
[62] Y. L. Guo, C. A. Di, S. H. Ye, X. N. Sun, J. Zheng, Y. G. Wen, W. P. Wu, G. Yu, Y. Q. Liu,"Multibit Storage of Organic Thin-Film Field-Effect Transistors", Adv Mater, 21, 1954 (2009).
[63] C. J. Kim, S. J. Choi, S. H. Kim, J. W. Han, H. Y. Kim, S. H. Yoo, Y. K. Choi,"Photoinduced Memory with Hybrid Integration of an Organic Fullerene Derivative and an Inorganic Nanogap-Embedded Field-Effect Transistor for Low-Voltage Operation", Adv Mater, 23, 3326 (2011).
[64] M. Barra, F. Bloisi, A. Cassinese, F. V. Di Girolamo, L. Vicari,"Photoinduced long-term memory effects in n-type organic perylene transistors", J Appl Phys, 106, 126105 (2009).
[65] L. Y. Chiu, H. L. Cheng, H. Y. Wang, W. Y. Chou, F. C. Tang,"Manipulating the ambipolar characteristics of pentacene-based field-effect transistors", Journal of Materials Chemistry C, 2, 1823 (2014).
[66] S. R. Saudari, Y. J. Lin, Y. Lai, C. R. Kagan,"Device Configurations for Ambipolar Transport in Flexible, Pentacene Transistors", Adv Mater, 22, 5063 (2010).
[67] T. B. Singh, T. Meghdadi, S. Gunes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, N. S. Sariciftci,"High-performance ambipolar pentacene organic field-effect transistors on poly(vinyl alcohol) organic gate dielectric", Adv Mater, 17, 2315 (2005).
[68] V. Stehr, J. Pfister, R. F. Fink, B. Engels, C. Deibel,"First-principles calculations of anisotropic charge-carrier mobilities in organic semiconductor crystals", Phys Rev B, 83, 155208 (2011).
[69] H. Kobayashi, N. Kobayashi, S. Hosoi, N. Koshitani, D. Murakami, R. Shirasawa, Y. Kudo, D. Hobara,"Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctyl [1] benzothieno [3,2-b] [1] benzothiophene (C8-BTBT) from first principle calculations", J Chem Phys, 139, 014707 (2013).
[70] W. Q. Deng, W. A. Goddard,"Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations", J Phys Chem B, 108, 8614 (2004).
[71] Y. Liu, H. F. Wang, H. L. Dong, J. H. Tan, W. P. Hu, X. W. Zhan,"Synthesis of a Conjugated Polymer with Broad Absorption and Its Application in High-Performance Phototransistors", Macromolecules, 45, 1296 (2012).
[72] Y. L. Guo, C. Y. Du, G. Yu, C. A. Di, S. D. Jiang, H. X. Xi, J. Zheng, S. K. Yan, C. L. Yu, W. P. Hu, Y. Q. Liu,"High-Performance Phototransistors Based on Organic Microribbons Prepared by a Solution Self-Assembly Process", Adv Funct Mater, 20, 1019 (2010).
[73] Z. Shuai, L. Wang, C. Song, "Theory of Charge Transport in Carbon Electronic Materials", Springer-Verlag Berlin Heidelberg, Chapter 2 (2012)
[74] R. A. Marcus,"ON THE THEORY OF OXIDATION-REDUCTION REACTIONS INVOLVING ELECTRON TRANSFER .1", J Chem Phys, 24, 966 (1956).
[75] N. S. Hush,"ADIABATIC RATE PROCESSES AT ELECTRODES .1. ENERGY-CHARGE RELATIONSHIPS", J Chem Phys, 28, 962 (1958).
[76] R. A. Marcus,"ELECTRON-TRANSFER REACTIONS IN CHEMISTRY - THEORY AND EXPERIMENT (NOBEL LECTURE)", Angew. Chem.-Int. Edit. Engl., 32, 1111 (1993).
[77] G. R. Hutchison, M. A. Ratner, T. J. Marks,"Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors", J Am Chem Soc, 127, 16866 (2005).
[78] E. F. Valeev, V. Coropceanu, D. A. da Silva Filho, S. Salman, J.-L. Bredas,"Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors", J Am Chem Soc, 128, 9882 (2006).
[79] W. Shu-Hao, L. An, S. Junling, D. Wei-Qiao, H. Ke-Li, W. A. Goddard, III,"First-principles investigation of anistropic hole mobilities in organic semiconductors", J Phys Chem B, 113, 8813 (2009).
[80] J. L. Bredas, D. Beljonne, V. Coropceanu, J. Cornil,"Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture", Chem Rev, 104, 4971 (2004).
[81] P. Stallinga,"Electronic Transport in Organic Materials: Comparison of Band Theory with Percolation/(Variable Range) Hopping Theory", Adv Mater, 23, 3356 (2011).
[82] Y. Xia, C. Liping, S. Zhigang, L. Yunqi, Z. Daoben,"Charge-transport behavior in aligned carbon nanotubes: a quantum-chemical investigation", Adv Funct Mater, 14, 289 (2004).
[83] A. L. Briseno, S. C. B. Mannsfeld, C. Reese, J. M. Hancock, Y. Xiong, S. A. Jenekhe, Z. Bao, Y. Xia,"Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters", Nano Lett, 7, 2847 (2007).
[84] C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. de Boer, T. T. M. Palstra,"Polymorphism in pentacene", Acta Crystallographica Section C-Crystal Structure Communications, 57, 939 (2001).
[85] S. Schiefer, M. Huth, A. Dobrinevski, B. Nickel,"Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films", J Am Chem Soc, 129, 10316 (2007).
[86] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff,"UFF, A FULL PERIODIC-TABLE FORCE-FIELD FOR MOLECULAR MECHANICS AND MOLECULAR-DYNAMICS SIMULATIONS", J Am Chem Soc, 114, 10024 (1992).
[87] L. F. Lan, R. X. Xu, J. B. Peng, M. L. Sun, X. H. Zhu, Y. Cao,"Dipole-induced Organic Field-Effect Transistor Gated by Conjugated Polyelectrolyte", Jpn J Appl Phys, 48, 080206 (2009).
[88] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, G. Schitter,"Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator", J Appl Phys, 96, 6431 (2004).
[89] K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, G. Groeseneken,"On the correct extraction of interface trap density of MOS devices with high-mobility semiconductor substrates", Ieee T Electron Dev, 55, 547 (2008).
[90] S. Ogawa, M. Shimaya, N. Shiono,"INTERFACE-TRAP GENERATION AT ULTRATHIN SIO2 (4-6NM)-SI INTERFACES DURING NEGATIVE-BIAS TEMPERATURE AGING", J Appl Phys, 77, 1137 (1995).
[91] E. M. Vogel, W. K. Henson, C. A. Richter, J. S. Suehle,"Limitations of conductance to the measurement of the interface state density of MOS capacitors with tunneling gate dielectrics", Ieee T Electron Dev, 47, 601 (2000).
[92] B. Mereu, A. Dimoulas, G. Vellianitis, G. Apostolopoulos, R. Scholz, M. Alexe,"Interface trap density in amorphous La2Hf2O7/SiO2 high-kappa gate stacks on Si", Appl Phys a-Mater, 80, 253 (2005).
[93] W. Y. Chou, B. L. Yeh,"Dual carrier traps related hysteresis in organic inverters with polyimide-modified gate-dielectrics", Appl Phys Lett, 96, 153302 (2010).
[94] G. Gu, M. G. Kane,"Moisture induced electron traps and hysteresis in pentacene-based organic thin-film transistors", Appl Phys Lett, 92, 053305 (2008).
[95] T. Lindner, G. Paasch, S. Scheinert,"Hysteresis in organic field-effect devices: Simulated effects due to trap recharging", J Appl Phys, 98, 114505 (2005).
[96] G. Gu, M. G. Kane, J. E. Doty, A. H. Firester,"Electron traps and hysteresis in pentacene-based organic thin-film transistors", Appl Phys Lett, 87, 243512 (2005).
[97] A. Bolognesi, M. Berliocchi, M. Manenti, A. Di Carlo, P. Lugli, K. Lmimouni, C. Dufour,"Effects of grain boundaries, field-dependent mobility, and interface trap states on the electrical characteristics of pentacene TFT", Ieee T Electron Dev, 51, 1997 (2004).
[98] J. W. H. Smith, I. G. Hill,"Influence of SiO2 dielectric preparation on interfacial trap density in pentacene-based organic thin-film transistors", J Appl Phys, 101, 044503 (2007).
[99] H. H. Choi, W. H. Lee, K. Cho,"Bias-Stress-Induced Charge Trapping at Polymer Chain Ends of Polymer Gate-Dielectrics in Organic Transistors", Adv Funct Mater, 22, 4833 (2012).
[100] B. Lee, Y. Chen, D. Fu, H. T. Yi, K. Czelen, H. Najafov, V. Podzorov,"Trap healing and ultralow-noise Hall effect at the surface of organic semiconductors", Nat Mater, 12, 1125 (2013).
[101] W. Y. Chou, T. Y. Ho, H. L. Cheng, F. C. Tang, J. H. Chen, Y. W. Wang,"Gate field induced ordered electric dipoles in a polymer dielectric for low-voltage operating organic thin-film transistors", Rsc Advances, 3, 20267 (2013).
[102] W. Y. Chou, J. Chang, C. T. Yen, Y. S. Lin, F. C. Tang, S. J. Liu, H. L. Cheng, S. L. C. Hsu, J. S. Chen,"The importance of p-n junction interfaces for efficient small molecule-based organic solar cells", Phys Chem Chem Phys, 14, 5284 (2012).
[103] Y. Ren, Y. Q. Dong, J. W. Y. Lam, B. Z. Tang, K. S. Wong,"Studies on the aggregation-induced emission of silole film and crystal by time-resolved fluorescence technique", Chem Phys Lett, 402, 468 (2005).
[104] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward, M. F. Toney,"Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction", J Am Chem Soc, 126, 4084 (2004).
[105] D. Nabok, P. Puschnig, C. Ambrosch-Draxl, O. Werzer, R. Resel, D. M. Smilgies,"Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations", Phys Rev B, 76, 235322 (2007).
[106] H. L. Cheng, J. W. Lin,"Controlling Polymorphic Transformations of Pentacene Crystal through Solvent Treatments: An Experimental and Theoretical Study", Cryst Growth Des, 10, 4501 (2010).
[107] W. Y. Chou, M. H. Chang, H. L. Cheng, Y. C. Lee, C. C. Chang, H. S. Sheu,"New Pentacene Crystalline Phase Induced by Nanoimprinted Polyimide Gratings", J Phys Chem C, 116, 8619 (2012).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw