進階搜尋


下載電子全文  
系統識別號 U0026-1208201500333500
論文名稱(中文) 以有限元素法分析頸椎退化經人工椎間盤或椎間融合器手術後已退化鄰近節之生物力學研究
論文名稱(英文) Finite Element Analysis of Biomechanics of the Adjacent Segments with Pre-existing Degeneration after Artificial Disc Replacement or Cage Insertion in Degenerative Cervical Disease
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 徐逸寧
研究生(英文) Yi-Ning Hsu
學號 N66024056
學位類別 碩士
語文別 中文
論文頁數 131頁
口試委員 指導教授-胡宣德
共同指導教授-黃國淵
口試委員-吳致平
口試委員-王永明
口試委員-方中
中文關鍵字 有限元素法  頸椎人工椎間盤  椎間融合器  生物力學 
英文關鍵字 finite element method  total disc replacement  cage  biomechanics 
學科別分類
中文摘要 科技日新月異的進步,長期使用平板電腦和智慧型手機導致頸椎退化性椎間盤疾病有增加的趨勢,若保守治療無效時,必須施作手術。治療方法分為融合手術與非融合手術兩種,由於融合手術在手術節固定後,椎間盤活動度受到限制,使得鄰近節活動度增加,進而加速鄰近節退化,因此,非融合手術逐漸受到重視,希望保有手術節活動度的同時又能減少對鄰近節的負擔。然而,有研究指出,鄰近節的退化可能與融合手術在術前已退化有關,因此本研究將探討手術前已有退化,是否是造成鄰近節病變的原因,並探討不同手術治療方式在手術節與鄰近節的生物力學表現。
本研究使用電腦斷層掃瞄與有限元素法套裝軟體,建立完整之頸椎模型,取頸椎第二節至頸椎第七節,接著設定較常發生問題的第五六頸椎椎間盤為手術節,如未動手術則將其椎間盤纖維環弱化至20%,以模擬較大程度之退化,而退化節設定在第四五頸椎椎間盤,也給予不同的楊氏係數來模擬不同程度的退化,分別是弱化至80%、60%和40%,另外,手術節第五六頸椎椎間盤以融合手術之椎間融合器或非融合手術之人工椎間盤置換。最後觀察頸椎在後仰、前彎、側彎和扭轉四種動作下的最大von Mises應力、應變能密度、相對轉角和小面關節接觸力的生物力學影響。
最終,本研究得出的結果為兩種手術以人工椎間盤做治療較佳,一方面能提供手術節一定的活動度,另一方面又能減少鄰近節的負擔,但要注意手術節小面關節的影響,且當退化節退化程度愈嚴重,術後的影響也愈大,會加速鄰近節的退化與第二次手術的發生,尤其又以椎間融合器最明顯。
英文摘要 There are two methods for the treatment of cervical degenerative disc disease; fusion surgery and non-fusion surgery. In fusion surgery, operating segment motion of intervertebral disc is restricted. It leads to adjacent segment increasing motion, thereby accelerating degeneration of adjacent segment. Therefore, non-fusion surgery is increasingly important. However, studies have pointed out that the degeneration of adjacent segments may be related to pre-existing degeneration before fusion surgery. Therefore, this study will investigate the reason of whether the adjacent segments cause degeneration, the adjacent segments with pre-existing degeneration before fusion surgery. And also explore the biomechanics of operating and adjacent segment on different methods of surgical treatment.
In this study, we use finite element method by ABAQUS, which is finite element analysis software, to analyze cervical degenerative disc disease. And reducing Young's modulus of the annulus fibrosus to simulate degeneration. Operating segment is set in the fifth and sixth cervical disc (C56) which occurs problem frequently and implanted cage or total disc replacement (TDR).Then degenerative segment is set in 4th and 5th cervical disc.
Finally, the research said that the treatment of using TDR is better than cage. For one thing, TDR can provide operating segment certain motion; for another, it can reduce the burden on the adjacent segment, but need to concern about the influence of facet joint on operating segment. The more serious degree of degeneration of the degenerative segment, the larger impact of postoperative. It will accelerate adjacent segment degeneration and increase the opportunity of the second surgery. Especially the cage insertion is more obvious.
論文目次 摘要 ii
誌謝 vii
目錄 viii
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 有限元素法(Finite Element Method, FEM) 1
1.2 FEM在醫學工程上的應用 2
1.3 退化性椎間盤疾病(Degenerative Disc Disease, DDD) 2
1.4 頸椎手術介紹 4
1.5 手術裝置介紹 5
1.5-1 椎間融合器介紹 5
1.5-2 人工椎間盤介紹 5
1.5-3 文獻回顧 6
1.6 研究動機與目的 7
1.7 研究方法 7
第二章 脊椎介紹 9
2.1 脊椎結構與組成 9
2.2 脊椎骨 11
2.3 椎間盤 16
2.4 小面關節(Facet Joint) 20
2.5 韌帶 20
第三章 研究方法與材料 27
3.1 建立模型 27
3.1-1 有限元素法建立脊椎模型之介紹 27
3.1-2 樣品取得與斷層掃描 29
3.1-3 醫學影像處理 31
3.1-4 建立有限元素模型 34
3.2 手術裝置之模型建立 39
3.2-1 人工椎間盤(Artificial Disc) 39
3.2-2 椎間融合器(Cage) 42
3.3 收斂性分析 43
3.4 各治療裝置手術模擬 45
3.5 邊界條件 47
3.5-1 單位系統 47
3.5-2 預載(Preload)與邊界條件 47
3.5-3 運動加載 48
3.6 材料與性質 51
第四章 分析結果 55
4.1 分析方向 55
4.2 相對轉角 59
4.3 最大von Mises應力[63] 68
4.4 應變能密度[63] 76
4.5 小面關節接觸力 84
第五章 結論與未來展望 87
5.1 結論 87
5.2 未來展望 90
參考文獻 91
附錄A Abaqus input檔 101
參考文獻 [1] W. Z. Zhao, B. Li, B. Z. Chen, S. W. He, J. Su, and L. Zhang, "Impact of Cervical Artificial Disc Implantation on the Biomechanical Function of Adjacent Segments," in Advanced Materials Research, 2013, pp. 358-364.
[2] A. Faizan, V. K. Goel, S. R. Garfin, C. M. Bono, H. Serhan, A. Biyani, et al., "Do design variations in the artificial disc influence cervical spine biomechanics? A finite element investigation," European Spine Journal, vol. 21, pp. 653-662, 2012.
[3] S. K. Ha, "Finite element modeling of multi-level cervical spinal segments (C3–C6) and biomechanical analysis of an elastomer-type prosthetic disc," Medical engineering & physics, vol. 28, pp. 534-541, 2006.
[4] A. Faizan, V. K. Goel, A. Biyani, S. R. Garfin, and C. M. Bono, "Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine-a finite element based study," Clinical Biomechanics, vol. 27, pp. 226-233, 2012.
[5] T. Zander, A. Rohlmann, and G. Bergmann, "Influence of different artificial disc kinematics on spine biomechanics," Clinical biomechanics, vol. 24, pp. 135-142, 2009.
[6] 陳敞牧. (2011). 頸椎退化性關節炎(骨刺)之症狀與治療. Available: http://epaper.ntuh.gov.tw/health/201101/project_2.html [June 23, 2015].
[7] 陳榮貴. (2011). 腰椎椎間盤退化性背痛(Discogenic Back Pain). Available: http://813.mnd.gov.tw/index.php?module=HealthInfo&action=health1_show&sn=77&num=62 [June 23, 2015].
[8] (2012). Degenerative Disc Disease-Topic Overview. Available: http://www.webmd.com/back-pain/tc/degenerative-disc-disease-topic-overview [June 23, 2015].
[9] C. W. Pfirrmann, A. Metzdorf, M. Zanetti, J. Hodler, and N. Boos, "Magnetic resonance classification of lumbar intervertebral disc degeneration," Spine, vol. 26, pp. 1873-1878, 2001.
[10] 陳德誠. (2011). 脊椎融合及非融合手術介紹 (飛訊 ed.). Available: http://www.nacs.gov.tw/NcsiWebFileDocuments/8570fd5369f8de20d5bace6ffd8d336b.pdf [June 23, 2015].
[11] A. Elsawaf, L. Mastronardi, R. Roperto, A. Bozzao, M. Caroli, and L. Ferrante, "Effect of cervical dynamics on adjacent segment degeneration after anterior cervical fusion with cages," Neurosurgical review, vol. 32, pp. 215-224, 2009.
[12] T. Sugawara, Y. Itoh, Y. Hirano, N. Higashiyama, and K. Mizoi, "Long term outcome and adjacent disc degeneration after anterior cervical discectomy and fusion with titanium cylindrical cages," Acta neurochirurgica, vol. 151, pp. 303-309, 2009.
[13] D. Corenman, "ProDisc-C | Cervical Artificial Disc Replacement | ACDF Fusion | Orthopedic Spine Surgeon in Vail," ed, 2010.
[14] T. A. Zdeblick and F. M. Phillips, "Interbody cage devices," Spine, vol. 28, pp. S2-S7, 2003.
[15] D. R. Gore, G. M. Gardner, S. B. Sepic, and M. P. Murray, "Roentgenographic findings following anterior cervical fusion," Skeletal radiology, vol. 15, pp. 556-559, 1986.
[16] A. S. Hilibrand, G. D. Carlson, M. A. Palumbo, P. K. Jones, and H. H. Bohlman, "Radiculopathy and Myelopathy at Segments Adjacent to the Site of a Previous Anterior Cervical Arthrodesis*," The Journal of Bone & Joint Surgery, vol. 81, pp. 519-28, 1999.
[17] J. Goffin, E. Geusens, N. Vantomme, E. Quintens, Y. Waerzeggers, B. Depreitere, et al., "Long-term follow-up after interbody fusion of the cervical spine," Journal of spinal disorders & techniques, vol. 17, pp. 79-85, 2004.
[18] K.-Y. Huang, R.-M. Lin, Y.-L. Lee, and J.-D. Li, "Factors affecting disability and physical function in degenerative lumbar spondylolisthesis of L4–5: evaluation with axially loaded MRI," European Spine Journal, vol. 18, pp. 1851-1857, 2009.
[19] D. Murrey, M. Janssen, R. Delamarter, J. Goldstein, J. Zigler, B. Tay, et al., "Results of the prospective, randomized, controlled multicenter Food and Drug Administration investigational device exemption study of the ProDisc-C total disc replacement versus anterior discectomy and fusion for the treatment of 1-level symptomatic cervical disc disease," The Spine Journal, vol. 9, pp. 275-286, 2009.
[20] J. S. Harrop, J. A. Youssef, M. Maltenfort, P. Vorwald, P. Jabbour, C. M. Bono, et al., "Lumbar adjacent segment degeneration and disease after arthrodesis and total disc arthroplasty," Spine, vol. 33, pp. 1701-1707, 2008.
[21] A. Van Ooij, F. C. Oner, and A. J. Verbout, "Complications of artificial disc replacement: a report of 27 patients with the SB Charite disc," Spine, vol. 28, pp. 369-383, 2003.
[22] H. Gray, Anatomy: descriptive and surgical: Blanchard and Lea, 1862.
[23] M. Nordin and V. H. Frankel, Basic biomechanics of the musculoskeletal system: Lippincott Williams & Wilkins, 2001.
[24] P. W. Hitchon, J. C. Torner, S. F. Haddad, and K. A. Follett, "Management options in thoracolumbar burst fractures," Surgical neurology, vol. 49, pp. 619-627, 1998.
[25] M. Silva, C. Wang, T. Keaveny, and W. Hayes, "Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate," Bone, vol. 15, pp. 409-414, 1994.
[26] R. Natarajan and G. Andersson, "Modeling the annular incision in a herniated lumbar intervertebral disk to study its effect on disk stability," Computers & structures, vol. 64, pp. 1291-1297, 1997.
[27] G. Bell, O. Dunbar, J. Beck, and A. Gibb, "Variations in strength of vertebrae with age and their relation to osteoporosis," Calcified tissue research, vol. 1, pp. 75-86, 1967.
[28] A. A. White and M. M. Panjabi, Clinical biomechanics of the spine vol. 2: Lippincott Philadelphia, 1990.
[29] A. Strayer. (2009). Lumbar spine surgery- A guide to preoperative and postoperative patient care. Available: http://www.aann.org/pdf/cpg/aannlumbarspine [June 23, 2015].
[30] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed.: John Wiley and Sons, 2001.
[31] C.-K. Lee, Y. E. Kim, C.-S. Lee, Y.-M. Hong, J.-M. Jung, and V. K. Goel, "Impact response of the intervertebral disc in a finite-element model," Spine, vol. 25, pp. 2431-2439, 2000.
[32] J.-L. Wang, M. Parnianpour, A. Shirazi-Adl, and A. E. Engin, "Viscoelastic finite-element analysis of a lumbar motion segment in combined compression and sagittal flexion: Effect of loading rate," Spine, vol. 25, pp. 310-318, 2000.
[33] E. Teo and H. Ng, "Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method," Medical engineering & physics, vol. 23, pp. 155-164, 2001.
[34] T. Pitzen, F. H. Geisler, D. Matthis, H. Müller-Storz, K. Pedersen, and W.-I. Steudel, "The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment," European Spine Journal, vol. 10, pp. 23-29, 2001.
[35] K. Goto, N. Tajima, E. Chosa, K. Totoribe, H. Kuroki, Y. Arizumi, et al., "Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model," Journal of orthopaedic science, vol. 7, pp. 243-246, 2002.
[36] A. Polikeit, S. J. Ferguson, L. P. Nolte, and T. E. Orr, "Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis," European Spine Journal, vol. 12, pp. 413-420, 2003.
[37] J. T.-M. Cheung, M. Zhang, and D. H.-K. Chow, "Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study," Clinical Biomechanics, vol. 18, pp. 790-799, 2003.
[38] K. Sairyo, V. K. Goel, A. Masuda, S. Vishnubhotla, A. Faizan, A. Biyani, et al., "Three-dimensional finite element analysis of the pediatric lumbar spine. Part I: pathomechanism of apophyseal bony ring fracture," European Spine Journal, vol. 15, pp. 923-929, 2006.
[39] A. Rohlmann, N. K. Burra, T. Zander, and G. Bergmann, "Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis," European Spine Journal, vol. 16, pp. 1223-1231, 2007.
[40] T. H. Smit, A. Odgaard, and E. Schneider, "Structure and function of vertebral trabecular bone," Spine, vol. 22, pp. 2823-2833, 1997.
[41] G. Shin, " Viscoelastic responses of the lumbar spine during prolonged stooping," Doctoral dissertation, North Carolina State University, 2005.
[42] P. Neittaanmäki, T. Rossi, K. Majava, O. Pironneau, V. Capasso, and W. Jäger. (2004). Modeling of intervertebral discs in the numerical analysis of spinal segment. Available: http://www.researchgate.net/profile/Adam_Glema/publication/228860514_MODELING_OF_INTERVERTEBRAL_DISCS_IN_THE_NUMERICAL_ANALYSIS_OF_SPINAL_SEGMENT/links/02e7e51a872abec173000000.pdf [June 23, 2015].
[43] M. Adams and W. Hutton, "The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces," Journal of Bone & Joint Surgery, British Volume, vol. 62, pp. 358-362, 1980.
[44] M. Sharma, N. A. Langrana, and J. Rodriguez, "Role of ligaments and facets in lumbar spinal stability," Spine, vol. 20, pp. 887-900, 1995.
[45] M. Sharma, N. Langrana, and J. Rodriguez, "Modeling of facet articulation as a nonlinear moving contact problem: sensitivity study on lumbar facet response," Journal of biomechanical engineering, vol. 120, pp. 118-125, 1998.
[46] Y.-H. Tsuang, Y.-F. Chiang, C.-Y. Hung, H.-W. Wei, C.-H. Huang, and C.-K. Cheng, "Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation—A finite element study," Medical engineering & physics, vol. 31, pp. 565-570, 2009.
[47] J. Chazal, A. Tanguy, M. Bourges, G. Gaurel, G. Escande, M. Guillot, et al., "Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction," Journal of biomechanics, vol. 18, pp. 167-176, 1985.
[48] A. Shirazi-Adl, A. Ahmed, and S. Shrivastava, "A finite element study of a lumbar motion segment subjected to pure sagittal plane moments," Journal of Biomechanics, vol. 19, pp. 331-350, 1986.
[49] N. H. Campbell-Kyureghyan, "Computational analysis of the time-dependent biomechanical behavior of the lumbar spine " Doctoral dissertation, The Ohio State University, 2004.
[50] V. K. Goel, H. Park, and W. Kong, "Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach," Journal of biomechanical engineering, vol. 116, pp. 377-383, 1994.
[51] M. Julio García Ruíz and L. Yarime Suárez González, "Comparison of hyperelastic material models in the analysis of fabrics," International Journal of Clothing Science and Technology, vol. 18, pp. 314-325, 2006.
[52] E. Pena, B. Calvo, M. Martinez, and M. Doblare, "A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint," Journal of Biomechanics, vol. 39, pp. 1686-1701, 2006.
[53] SIMULIA Abaqus Analysis User's Manuals, Therory Manuals and Example Problems Manuals, Version 6.14 ed. France: Dassault Systèmes Corporation, 2014.
[54] G. Denoziere, "Numerical modeling of a ligamentous lumbar motion segment," 2004.
[55] F. Galbusera, A. Fantigrossi, M. Raimondi, R. Assietti, M. Sassi, and M. Fornari, "Biomechanics of the C5-C6 spinal unit before and after placement of a disc prosthesis," Biomechanics and modeling in mechanobiology, vol. 5, pp. 253-261, 2006.
[56] Synthes. Prodisc-C Nova: Cervical Disc Prosthesis to Restor Disc Height and Maintain Segmental Motion. Available: http://sites.synthes.com/MediaBin/International%20DATA/036.000.568.pdf [June 23, 2015].
[57] V. A. González-Mora, M. Hoffmann, R. Stroosnijder, E. Espinar, J. M. Llamas, M. Fernández-Fairén, et al., "Influence of different CoCrMo counterfaces on wear in UHMWPE for artificial joints," Journal of Biomedical Science and Engineering, vol. 4, p. 375, 2011.
[58] P. Borkowski, P. Marek, G. Krzesiński, J. Ryszkowska, B. Waśniewski, P. Wymysłowski, et al., "Finite element analysis of artificial disc with an elastomeric core in the lumbar spine," Acta Bioeng. Biomech, vol. 14, pp. 1-8, 2012.
[59] M. Long and H. Rack, "Titanium alloys in total joint replacement—a materials science perspective," Biomaterials, vol. 19, pp. 1621-1639, 1998.
[60] J. N. Grauer, A. Biyani, A. Faizan, A. Kiapour, K. Sairyo, A. Ivanov, et al., "Biomechanics of two-level Charite artificial disc placement in comparison to fusion plus single-level disc placement combination," The Spine Journal, vol. 6, pp. 659-666, 2006.
[61] Stryker. SolisTM Cervical Cage: Product Overview. Available: http://www.strykerneurospine.com.au/sites/default/files/pdf/information/MTXD18010101.pdf [June 23, 2015].
[62] W. Z. Kong and V. K. Goel, "Ability of the finite element models to predict response of the human spine to sinusoidal vertical vibration," Spine, vol. 28, pp. 1961-1967, 2003.
[63] 劉啟台, 細說材料力學[理論與題型剖析]. 台北: 浩瀚出版社, 2009.
[64] A. Rohlmann, T. Zander, and G. Bergmann, "Effect of total disc replacement with ProDisc on intersegmental rotation of the lumbar spine," Spine, vol. 30, pp. 738-743, 2005.
[65] A. Rohlmann, A. Mann, T. Zander, and G. Bergmann, "Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study," European Spine Journal, vol. 18, pp. 89-97, 2009.
[66] A. E. Dmitriev, B. W. Cunningham, N. Hu, G. Sell, F. Vigna, and P. C. McAfee, "Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: an in vitro human cadaveric model," Spine, vol. 30, pp. 1165-1172, 2005.
[67] 林冠瑋, "電腦輔助脊椎之有限元素分析," 碩士論文, 國立成功大學土木工程研究所, 台南市, 2008.
[68] 劉哲榮, "後方腰椎間融合手術後應力重新分配之有限元素分析," 碩士論文, 國立成功大學土木工程研究所, 台南市, 2009.
[69] 高力行, "以有限元素分析退化性椎間盤疾病經腰椎手術後置入腰脊突間支架或椎籠之生物力學影響," 碩士論文, 國立成功大學土木工程研究所, 台南市, 2013.
[70] 黃有恒, "以有限元素法分析骨質疏鬆症病患因胸腰椎骨折接受減壓及固定手術治療之生物力學影響," 碩士論文, 國立成功大學土木工程研究所, 台南市, 2013.
[71] 謝孟樸, "以有限元素分析多節頸椎退化性椎間盤疾病採用人工椎間盤合併椎間融合器對鄰近節之生物力學影響," 碩士論文, 國立成功大學土木工程研究所, 台南市, 2014.
[72] 姜智騫, "以有限元素法分析腰椎退化性疾病經後方融合手術後已退化鄰近節之生物力學研究," 碩士論文, 國立成功大學土木工程研究所, 台南市, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw