進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1208201418561700
論文名稱(中文) 基於提升機制的小波轉換影像插補法
論文名稱(英文) Wavelet-Based Image Interpolation in Lifting Structure
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 蔡慶萱
研究生(英文) Ching-Hsuan Tsai
學號 p76014680
學位類別 碩士
語文別 英文
論文頁數 93頁
口試委員 指導教授-郭淑美
口試委員-蔡聖鴻
口試委員-戴顯權
口試委員-洪金車
口試委員-蔡宗吉
中文關鍵字 影像壓縮  影像插補  小波轉換  整數小波轉換  多項式迴歸 
英文關鍵字 Image compression  image interpolation  wavelet transform  integer wavelet transform  polynomial curve fitting 
學科別分類
中文摘要 本篇論文提出一種基於小波提升機制的影像插補法,並使用多項式迴歸以進一步提升影像插補的品質。基於離散小波轉換後的低頻係數,此篇論文提出預測型的演算法,以預測原始影像經整數小波轉換後的高頻係數,得以將小波轉換後的低頻影像重建為原始影像,以達到影像插補的目的。為了進一步改進重建影像的品質,本研究更使用多項式迴歸建立真實小波高頻係數和預測小波高頻係數間的線性關係,並運用此線性關係得到更好的預測結果。經由實驗結果顯示,本篇論文提出的使用多項式迴歸的預測型演算法表現比其他文獻所呈現的方法更有效率。
英文摘要 A floating-point wavelet-based and an integer wavelet-based image interpolations in lifting structures and polynomial curve fitting for image resolution enhancement are proposed in this thesis. The proposed prediction methods estimate high-frequency wavelet coefficients of the original image on the available low-frequency wavelet coefficients, so that the original image can be reconstructed by using the proposed prediction method. To further improve the reconstruction performance, we use polynomial curve fitting to build relationships between actual high-frequency wavelet coefficients and estimated high-frequency wavelet coefficients. Results of the proposed prediction algorithm for different wavelet transforms are compared to show the proposed prediction algorithm outperforms other methods.
論文目次 中文摘要 I
Abstract II
誌謝 III
Chapter 1 Introduction 1
Chapter 2 Background 4
2.1 Image Interpolation 4
2.2 Wavelet Transform 6
2.3 Lifting Scheme 8
2.4 Integer Wavelet Transform 11
Chapter 3 The Proposed Prediction Algorithm 16
3.1 Prediction 16
3.2 Filter-Based Prediction Algorithm 17
Chapter 4 Experimental Results 27
Chapter 5 Conclusions 52
References 53
Appendix A : Prediction Filters 56
A. 1 Lifting Steps for Analysis Wavelet Transform 56
A. 2 Lifting Steps for Analysis Wavelet Transform 60
A. 3 Lifting Steps for Analysis Wavelet Transform 65
A. 4 Lifting Steps for Analysis Wavelet Transform 71
A. 5 Lifting Steps for Analysis Wavelet Transform 78
A. 6 Lifting Steps for Analysis Wavelet Transform 83
A. 7 Lifting Steps for Analysis Wavelet Transform 86
A. 8 Lifting Steps for Analysis Wavelet Transform 89
參考文獻 [1] T.M. Lehmann, C. Gonner, and K. Spitzer, “Survey: interpolation methods in medical image processing,” IEEE Trans. Med. Imaging, vol. 18, no. 11, pp. 1049–1075, 1999.
[2] R.G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 6, pp. 1153–1160, 1981.
[3] S.M. Guo, C.Y. Hsu, G.C. Shih, and C.W. Chen, “Fast pixel-size-based large-scale enlargement and reduction of image: adaptive combination of bilinear interpolation and discrete cosine transform,” Journal of Electronic Imaging, vol. 20, no. 3, pp. 033005, 2011.
[4] W.K. Carey, D.B. Chuang, and S.S. Hemami, “Regularity-preserving image interpolation,” IEEE Trans. Image Process., vol. 8, no. 9, pp. 1293–1297, 1999.
[5] A. Temizel and T. Vlachos, “Wavelet domain image resolution enhancement,” IEE Proc. Vis. Image Signal Process., vol. 153, no. 1, pp. 25–30, 2006.
[6] Y. Piao, I.H. Shin, and H.W. Park, “Image resolution enhancement using inter-subband correlation in wavelet domain,” in Proc. ICIP, vol. 1, pp. 445–448, 2007.
[7] K. Kinebuchi, D.D. Muresan, and T.W. Parks, “Image interpolation using wavelet-based hidden Markov trees,” in IEEE Proc. ICASSP, vol. 3, pp. 1957–1960, 2001.
[8] A. Temizel, “Image resolution enhancement using wavelet domain hidden Markov tree and coefficient sign estimation,” in Proc. ICIP, vol. 5, pp. 381–384.
[9] S.S. Kim, Y.S. Kim, and I.K. Eom, “Image interpolation using MLP neural network with phase compensation of wavelet coefficients,” Neural Comput. Appl., vol. 18, no. 8, pp. 967–977, 2009.
[10] W.L. Lee, C.C. Yang, H.T. Wu, and M.J. Chen, “Wavelet-based interpolation scheme for resolution enhancement of medical images,” J. Signal Process. Syst., vol. 55, no. 1-3, pp. 251–265, 2009.
[11] S.M. Guo, B.W. Lai, Y.C. Chou, and C.C. Yang, “Novel wavelet-based image interpolations in lifting structures for image resolution enhancement,” Journal of Electronic Imaging, vol. 20, no. 3, pp.033007, 2011
[12] H. Demirel and G. Anbarjafari, “Discrete wavelet transform-based satellite image resolution enhancement,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 1997–2004, 2011
[13] H. Chavez-Roman, V. Ponomaryov, and R. Peralta-Fabi, “Image super resolution using interpolation and edge extraction in wavelet transform space,” International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6, 2012.
[14] M.Z. Iqbal, A.Ghafoor, A.M. Siddiqui, “Satellite image resolution enhancement using dual-tree complex wavelet transform and nonlocal means,” IEEE Geoscience and Remote Sensing Letters, vol. 10, no. 3, pp.451-455, 2013.
[15] H. Demirel and G. Anbarjafari, “IMAGE Resolution Enhancement by Using Discrete and Stationary Wavelet Decomposition,” IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 20, no. 5, 2011.
[16] M.S.Divya Lakshmi, “Robust Satellite Image Resolution Enhancement Based On Interpolation Of Stationary Wavelet Transform,” International Journal of Scientific & Engineering Research, vol. 4, no. 6, 2013.
[17] R.C. Calderbank, I. Daubechies, W. Sweldens, and B.L. Yeo, “Wavelet transforms that map integers to integers,” J. Appl. Comput. Harmon. Anal., vol. 5, no. 3, pp. 332–369, 1998.
[18] A. Bilgin, G. Zweig, and M.W. Marcellin, “Three-dimensional image compression with integer wavelet transforms,” Appl. Opt., vol. 39, no. 11, pp.1799–1814, 2000.
[19] Z. Xiong, X. Wu, S. Cheng, and J. Hua, “Lossy-to-lossless compression of medical volumetric data using three-dimensional integer wavelet transforms,” IEEE Transactions on Medical Imaging, vol. 22, pp. 459–470, 2003.
[20] S.G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674–693, 1989.
[21] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” J. Fourier Anal. Appl., vol. 4, no. 3, pp. 247–269, 1998.
[22] Test images, http://sipi.usc.edu/database/.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw