進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1208201315220700
論文名稱(中文) 應用於獵取太陽能之具最大功率追蹤升壓型轉換器
論文名稱(英文) A Boost Converter with Maximum Power Point Tracking for Solar Photovoltaic Energy Harvesting
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 王頌堯
研究生(英文) Sung-Yao Wang
學號 N26000143
學位類別 碩士
語文別 中文
論文頁數 63頁
口試委員 指導教授-魏嘉玲
口試委員-張順志
口試委員-蔡建泓
口試委員-陳榮銘
口試委員-丁信文
中文關鍵字 太陽能  最大功率追蹤  直流-直流轉換器 
英文關鍵字 Photovoltaic Energy  Maximum Power Point Tracking  DC-DC Converter 
學科別分類
中文摘要 近年來由於能源過度消耗,加上綠能意識日漸提升,如何從環境中來獵取再生能量已成為大家關注的議題,許多不同型式的獵能器也相繼被開發出來。本篇論文提出一應用於獵取太陽能之具最大功率追蹤升壓型轉換器,其利用類比式電路來實現最大功率追蹤,取代了傳統需要負責做複雜運算的微處理器,並結合一升壓型轉換器,藉由調變其功率電晶體之導通時間,來控制太陽能電池的輸出功率,並兼具升壓功能。此晶片使用台灣積體電路公司0.18μm 1P6M 混和訊號製程,並以32 S/B封裝,面積為1.08×1.25 mm2,遠小於傳統結合微處理器實現的面積。實際量測結果,最大功率追蹤效率可達90%,轉換器輸出電壓可為1.2~1.8V。
英文摘要 Due to the excessive energy consumption in recent years and the raising consciousness in green energies, how to harvest regeneration energy from the environment has drawn more and more attentions. A boost converter with maximum power point tracking for solar photovoltaic energy harvesting has been proposed. The maximum power point tracking function is realized with analog circuits, instead of a microprocessor which is used conventionally to perform complex computation. In the proposed system, the output power of the photovoltaic cells is controlled by modulating the conduction time of the power MOS. The chip was fabricated by using Taiwan Semiconductor Manufacturing Company (TSMC) 0.18μm 1P6M mixed-signal CMOS process. The total chip area is 1.08×1.25 mm2, which is much smaller than that with a microprocessor. The measured maximum tracking efficiency is 90%, and the output voltage of the converter can vary from 1.2V to 1.8V.
論文目次 目錄
第一章 簡介 1
1.1 研究動機 1
1.2 論文架構 2
第二章 太陽能電池與最大功率追蹤演算法基本介紹 3
2.1 太陽能電池基本介紹 3
2.1.1 太陽能電池種類介紹 3
2.1.2 太陽能電池特性介紹 4
2.2 最大功率追蹤演算法基本介紹 8
2.2.1 擾動觀察法(Perturb and Observe) 8
2.2.1 增量電導法(Incremental Conductance) 10
2.2.2 開路電壓法(Fractional Open-Circuit Voltage) 12
2.2.3 短路電流法(Fractional Short-Circuit Current) 12
第三章 主電路架構簡介與電路設計 13
3.1 主電路架構簡介 13
3.1.1 升壓型轉換器(Boost Converter) 14
3.1.2 儲能元件(Energy Storage Element) 16
3.2 電路設計 17
3.2.1 參考電壓產生器(Reference Voltage Generator) 18
3.2.2 比較器(Comparator) 21
3.2.3 最高電位選擇器(Supply Voltage Selector) 23
3.2.4 不連續導通模態偵測器(DCM Detector) 24
3.2.5 時脈產生器(Clock Generator) 25
3.2.6 電流感測電路(Current Sensing Circuit) 26
3.2.7 最大功率追蹤控制器(MPPT Controller) 28
3.2.8 脈波頻率調變控制器(PFM Controller) 32
3.2.9 遲滯時間控制器(Dead-time Controller) 34
3.2.10 反振盪電路(Anti-ringing Circuit) 35
第四章 模擬結果與佈局 36
4.1 模擬結果 36
4.2 佈局(Layout) 47
第五章 量測結果 49
5.1 量測儀器及環境架設 49
5.2 量測結果 52
5.3 文獻比較 58
第六章 結論與未來展望 60
參考文獻 61
參考文獻 參考文獻
[1] E.O. Torres and G.A. Rincón-Mora, “Long-lasting, self-sustaining, and energy-harvesting system-in-package (SiP) wireless micro-sensor solution,” in Int. Conf. on Energy, Environment, and Disasters, Jul. 2005, pp. 1–33.

[2] R. D. Prabha, G. A. Rincón-Mora, and S. Kim, “Harvesting circuits for miniaturized photovoltaic cells,” in Proc. IEEE Int. Symp. on Circuit and Syst., May 2011, pp. 309–312.

[3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Progr. Photovoltaics: Res. Appl., vol. 21, no. 1, pp. 1–11, Jan. 2013.

[4] W. S. Wang, T. O’Donnell, L. Ribetto, B. O’Flynn, M. Hayes, and C. O’Mathuna, “Energy harvesting embedded wireless sensor system for building environment applications,” in Int. Conf. Wireless VITAE, May 2009, pp. 36–41.

[5] C. Y. Yang, C. Y. Hsieh, F. K. Feng, and K. H. Chen, “Highly efficient analog maximum power point tracking (AMPPT) in a photovoltaic system,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 2, pp. 1546–1556, Jul. 2012.

[6] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.

[7] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 46–54, Jan. 2001.

[8] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963–973, Jul. 2005.

[9] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Tran. Ind. Electron., vol.55, no. 7, pp. 2622–2628, Jul. 2008.

[10] Y. C. Kuo, T. J. Liang, and J. F. Chen, “Novel maximum-power-point-tracking controller for photovoltaic energy conversion system,” IEEE Tran. Ind. Electron., vol. 48, no. 3, pp. 594–601, Jun. 2001.

[11] G. W. Hart, H. M. Branz, and C. H. Cox, “Experimental tests of open-loop maximum-power-point tracking techniques,” Solar Cells, vol. 13, pp. 185–195, Dec.1984.

[12] D. Y. Lee, H. J. Noh, and D. S. Hyun, “An improved MPPT converter with current compensation method for small scaled PV-applications,” in Proc. 28th Annu. Conf. Ind. Electron. Soc., Nov. 2002, pp. 1113–1118.

[13] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation system,” in Proc. 2000 IEEE Int. Symp. Ind. Electron., 2000, pp. 157–162.

[14] S. Yuvarajan and S. Xu, “Photo-voltaic power converter with a simple maximum-power-point-tracker,” in Proc. 2003 Int. Symp. Circuits Syst., May 2003, vol. 3, pp. III-399–III-402.

[15] H. H. Wu, “Design of an adaptive peak-inductor-current controlled pulse frequency modulated boost converter with a near-threshold startup voltage,” M.S, thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., July. 2012.

[16] B. Sahu and G. A. Rincón-Mora, “An accurate, low voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 312–321, Feb. 2007.

[17] K. N. Leung and P. K. T. Mok, “A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 526–530, Apr. 2002.

[18] Y. T. Wong, C. W. Ng, H. M. Wan, K. K. Kwong, Y. H. Lam, and W. H. Ki, “Near-threshold startup integrated boost converter with slew rate enhanced error amplifier,” in Proc. IEEE Int. Symp. Circuits Syst., 2009, pp. 2409–2412.

[19] Y. W. Wang, “A wide-range programmable sinusoidal frequency synthesizer for electrochemical impedance spectroscopy measurement system,” M.S, thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., July. 2012.

[20] J. C. Tsai, T. Y. Huang, W. W. Lai, and K. H. Chen, “Dual modulation technique for high efficiency in high-switching buck converters over a wide load range,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 7, pp.1671–1680, Jul. 2011.

[21] H. Shao, C. Y. Tsui, and W. H. Ki, “The design of a micro power management system for applications using photovoltaic cells with the maximum output power control,” IEEE Trans. VLSI Systems, vol. 17, no. 8, pp. 1138–1142, Aug. 2009.

[22] JS. Patel and W. Shireen, “Fast converging digital MPPT control for photovoltaic (PV) applications,” in Proc. IEEE Power EnergySoc. General Meeting, 2011, pp. 1–6.

[23] Y. Qiu, C. V. Liempd, B. O. h. Veld, P. G Blanken, and C. V. Hoof, “5μW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 118-120.

[24] H. Kim, S. Kim, C. K. Kwon, Y. J. Min, C. Kim, and S. W. Kim, “An energy-efficient fast maximum power point tracking circuit in an 800-μW photovoltaic energy harvester,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2927–2935, Jun. 2013.

[25] D. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, Inc., 1997.

[26] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. New York: Oxford, 2010.

[27] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.

[28] W. M. C. Sansen, Analog Design Essentials. Dordrecht, Netherland: Springer, 2008.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw