進階搜尋


 
系統識別號 U0026-1208201312320200
論文名稱(中文) 電動搬運載具用非接觸式三相線型感應供電軌道系統之研製
論文名稱(英文) Design and Implementation of Three-Phase Contactless Linear Inductive Power Track System for Electric Transport Vehicles
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 張華敬
研究生(英文) Hua-Jing Chang
學號 N26001199
學位類別 碩士
語文別 中文
論文頁數 104頁
口試委員 召集委員-高瑞棋
口試委員-陳建富
口試委員-陳智揚
指導教授-李嘉猷
中文關鍵字 非接觸式三相線型感應供電軌道系統  電動搬運載具  三相電能拾取器 
英文關鍵字 three-phase contactless linear inductive power track system  electric transport vehicles  three-phase pickups 
學科別分類
中文摘要 本論文旨在研究非接觸式線型感應供電軌道系統,針對單相電能拾取器拾取能力與鐵芯利用率以及單相供電軌道於空間中磁通分布特性等問題,應用非接觸式感應電能傳輸技術,研製電動搬運載具用非接觸式三相線型感應供電軌道系統。文中首先藉由有限元素分析法磁場模擬軟體Maxwell設計三相電能拾取器結構型式,進而透過磁路分析建立相應磁路模型,以獲致高鐵芯利用率之鐵芯規格。所提三相電能拾取器與單相者之差異,在於三相電流彼此錯相之形式可使磁通強度相互彌補,使其能量傳輸均勻性更佳。最後經實驗量測,整體系統最大輸出功率為1.1kW,最高電能傳輸效率達73.7%。
英文摘要 The purpose of this thesis is aimed at improving the problems of the contactless linear inductive power track system, including the transmission capability and utilization of core in single-phase pickups, and the flux distribution from single-phase inductive power track. By adopting the contactless inductive power transmission techniques, this research will develop the three-phase contactless linear inductive power track system for electric transport vehicles. At first, finite element method software Maxwell is used to designing the core contour of three-phase pickups. And then, the core dimension with high utilization is determined by the magnetic model. The difference between three-phase pickups and single-phase pickups is the different three-phase current at the same time, which makes up flux with each other to construct the best uniformity of energy transmission. Finally, through the experimental result, the maximal output power is 1.1k watts, and the highest power transmission efficiency is 73.7%.
論文目次 頁數
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1-1 研究背景與目的 1
1-2 非接觸式線型感應供電軌道之應用 4
1-3 研究方法 9
1-4 論文大綱 10
第二章 非接觸式電能傳輸系統原理 11
2-1 前言 11
2-2 非接觸式線型感應供電軌道之耦合結構 11
2-2-1 磁性材料 11
2-2-2 常見電能拾取器 14
2-2-3 封閉式電能拾取器 17
2-2-4 三相電能拾取器 19
2-3 非接觸式線型感應供電軌道系統耦合原理 21
第三章 三相線型感應供電軌道系統分析 25
3-1 前言 25
3-2 三相感應耦合結構模擬與分析 25
3-2-1 三相激勵電流 25
3-2-2 磁場模擬分析 27
3-2-3 磁路理論分析 36
3-3 諧振電路分析 43
3-3-1 初級側諧振電路分析 44
3-3-2 次級側諧振電路分析 46
3-3-3 次級側反射阻抗分析 48
3-3-4 品質因數 50
3-3-5 三相諧振電路分析 52
第四章 三相線型感應供電軌道系統電路 54
4-1 前言 54
4-2 整體系統架構 54
4-3 初級側電路 55
4-3-1 三相交流激勵電路 55
4-3-2 電流比例調整電路 56
4-3-3 單晶片控制電路 60
4-3-4 諧振頻率追蹤機制 62
4-3-5 回授電壓感測電路 64
4-3-6 三相線型感應供電軌道 65
4-4 三相電能拾取器 66
4-4-1 Y5電能拾取器 66
4-4-2 Y6電能拾取器 68
4-4-3 Y7電能拾取器 69
4-4-4 電能拾取器鐵芯利用率比較 70
4-5 次級側電路 72
4-5-1 三相整流濾波電路 73
4-5-2 電壓調節電路 73
4-6 非接觸式三相線型感應供電軌道系統設計流程 75
第五章 系統模擬與實驗結果 78
5-1 前言 78
5-2 Simplis電路模擬 78
5-3 系統規格 81
5-4 系統實驗結果與波形量測 82
5-4-1 整體系統量測 83
5-4-2 諧振頻率追蹤機制量測 86
5-4-3 單相與三相線型感應供電軌道系統量測 87
5-4-4 電壓調節電路量測 91
5-4-5 整體系統最大輸出功率量測 94
第六章 結論與未來研究方向 96
6-1 結論 96
6-2 未來研究方向 97
參考文獻 98
參考文獻 [1] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, Jun. 2012.
[2] K. C. Wang, C. W. Hsu, T. J. Chan, T. S. Chien, and T. R. Chen, “Study of applying contactless power transmission system to battery charge,” in Proc. IEEE PEDS, 2009, pp. 257-262.
[3] C. L. W. Sonntag, E. A. Lomonova, J. L. Duarte, and A. J. A. Vandenput, “Specialized receiver for three-phase contactless energy transfer desktop applications,” in Proc. European Conf. Power Electron. Appl., 2007, pp. 1-11.
[4] J. A. Taylor, Z. N. Low, J. Casanova, and J. Lin, “A wireless power station for laptop computers,” in Proc. IEEE RWS, 2010, pp. 625-628.
[5] T. Yazaki, I. Morita, and H. Tanaka, “Demonstration of optical wireless USB 2.0 system with wireless power transfer,” in Proc. IEEE ICCE, 2011, pp. 11-12.
[6] 賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,國立成功大學電機工程學系碩士論文,2009年。
[7] 李昆蔚,電動載具用編織型非接觸式感應充電平台之研製,國立成功大學電機工程學系碩士論文,2011年。
[8] T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, and Z. Wang, “An asymmetric resonant coupling wireless power transmission link for micro-ball endoscopy,” in Proc. IEEE IEMBS, 2010, pp. 6531-6534.
[9] D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” in Proc. IEEE NEMS, 2010, pp. 604-607.
[10] D. B. Shire, S. K. Kelly, J. H. Chen, P. Doyle, M. D. Gingerich, S. F. Cogan, W. A. Drohan, O. Mendoza, L. Theogarajan, J. L. Wyatt, and J. F. Rizzo, “Development and implantation of a minimally invasive wireless subretinal neurostimulator,” IEEE Trans. Biomed. Eng., vol. 56, no. 10, pp. 2502-2511, Oct. 2009.
[11] J. G. Hayes, J. T. Hall, M. G. Eqan, and J. M. D. Murphy, “Full-bridge, series-resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” in Proc. IEEE PESC, 1996, pp. 1913-1918.
[12] D. J. Thrimawithana and U. K. Madawala, “A three-phase bi-directional IPT system for contactless charging of electric vehicles,” in Proc. IEEE ISIE, 2010, pp. 1957-1962.
[13] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. IEEE APEC, 1997, pp. 841-847.
[14] J. G. Hayes, “Battery charging systems for electric vehicles,” in Proc. IEE Colloquium Electric Vehicles-A Technology Roadmap for the Future, 1998, pp. 4/1-4/8.
[15] A. S. Masoum, S. Deilami, P. S. Moses, and A. Abu-Siada, “Impacts of battery charging rates of plug-in electric vehicle on smart grid distribution systems,” in Proc. IEEE ISGT, 2010, pp. 1-6.
[16] Y. Hori, “Future vehicle society based on electric motor, capacitor and wireless power supply,” in Proc. IEEE IPEC, 2010, pp. 2930-2934.
[17] U. K. Madawala and D. J. Thrimawithana, “A two-way inductive power interface for single loads,” in Proc. IEEE ICIT, 2010, pp. 673-678.
[18] 張繼安,電動車用非接觸式三相感應充電槳系統之研製,國立成功大學電機工程學系碩士論文,2012年。
[19] C. S. Lin, S. G. Lin, C. F. Chang, H. H. Li, and L. R. Chen, “Model of contactless power transfer system for linear track,” in Proc. IEEE PEDS, 2010, pp. 1075-1079.
[20] 張宇誠,具封閉型耦合結構非接觸式感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2010年。
[21] 詹凱筌,具可拆卸機制封閉式耦合結構之非接觸式線型感應饋電軌道系統,國立成功大學電機工程學系碩士論文,2012年。
[22] J. Jia, W. Liu, and H. Wang, “Contactless power delivery system for the underground flat transit of mining,” in Proc. ICEMS, 2003, pp. 282-284.
[23] T. Gerrits, D. C. J. Krop, L. Encica, and E. A. Lomonova, “Development of a linear position independent inductive energy transfer system,” in Proc. IEMDC, 2011, pp. 1445-1449.
[24] J. Huh, S. Lee, C. Park, G. H. Cho, and C. T. Rim, “High performance inductive power transfer system with narrow rail width for on-line electric vehicles,” in Proc. IEEE ECCE, 2010, pp. 647-651.
[25] S. Ahn and J. Kim, “Magnetic field design for high efficient and low EMF wireless power transfer in on-line electric vehicle,” in Proc. EUCAP, 2011, pp. 3979-3982.
[26] 陳勝建,非接觸式編織型饋電軌道之研究,國立成功大學電機工程學系碩士論文,2010年。
[27] K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with universal inductive interface,” in Proc. PCCON, 2002, pp. 227-232.
[28] M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, Jul. 2001.
[29] A. Kumar and A. P. Hu, “Linearly tuned wireless power pick-up,” in Proc. IEEE ICSET, 2011, pp. 1-6.
[30] U. K. Madawala, D. Thrimawithana, and N. Kularathna, “An ICPT-supercapacitor technology for contactless power transfer with surge suppression,” in Proc. IEEE IECON, 2005, pp. 964-969.
[31] D. J. Thrimawithana and U. K. Madawala, “A three-phase bi-directional IPT system for contactless charging of electric vehicles,” in Proc. IEEE ISIE, 2011, pp. 1957-1962.
[32] Kamen, “Contactless Power System,” Vahle Corp., Germany, Nr. 9d/EN, Nov. 2008.
[33] “IPT charge for electric vehicles,” Conductix-Wampfler delachaux group, Germany, KAT9200-0001-E, 2009.
[34] “IPT charge for electric vehicles,” Daifuku, Japan, 1108-06CP-E, 2011.
[35] Schoneberger, “Primove contactless and catenary-free operation,” Bombardier Inc., 10832/SYS/09- 2010/en, Canada, 2010.
[36] “非接觸供電,” AMIDOF, Taiwan, 2005.
[37] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 995-1002, Jul. 2004.
[38] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, Oct. 2006.
[39] H. L. Li, A. P. Hu, G. A. Covic, and C. S. Tang, “Optimal coupling condition of IPT system for achieving maximum power transfer,” Electronics Letters, vol. 45, no. 1, pp. 76-77, Jan. 2009.
[40] N. A. Keeling, G. A. Covic, and J. T. Boys, “A unity-power-factor IPT pickup for high-power applications,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 744-751, Feb. 2010.
[41] H. H. Wu, J. T. Boys, and G. A. Covic, “An AC processing pickup for IPT systems,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1275-1284, May 2010.
[42] H. H. Wu, G. A. Covic, J. T. Boys, and D. J. Robertson, “A series-tuned inductive-power-transfer pickup with a controllable AC-voltage output,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 98-109, Jan. 2011.
[43] C. Y. Huang, J. T. Boys, and G. A. Covic, “LCL pickup circulating current controller for inductive power transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2081-2093, Apr. 2013.
[44] M. Budhia, J. T. Boys, G. A. Covic, and C. Y. Huang “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318-328, Jan. 2013.
[45] M. Budhia, G. A. Covic, and J. T. Boys, “Design and optimization of circular magnetic structures for lumped inductive power transfer systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
[46] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, Feb. 2004.
[47] S. Raabe and G. A. Covic, “Practical design considerations for contactless power transfer quadrature pick-ups,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 400-409, Jan. 2013.
[48] A. Zaheer, M. Budhia, D. Kacprzak, and G. A. Covic, “Magnetic design of a 300W under-floor contactless power transfer system,” in Proc. IEEE IECON, 2011, pp. 1408-1413.
[49] S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems,” in Proc. IEEE ICIEA, 2007, pp. 68-73.
[50] G. A. J. Elliot, J. T. Boys, and G. A. Covic, “A design methodology for flat pick-up ICPT systems,” in Proc. ICIEA, 2006, pp. 1-7.
[51] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IEEE IPEC, 2005, pp. 1133-1136.
[52] M. L. G. Kissin, G. A. Covic, and J. T. Boys, “Steady-state flat-pickup loading effects in polyphase inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2274-2282, Jun. 2011.
[53] G. Elliott, S. Raabe, G. A. Covic, and J. T. Boys, “Multiphase pickups for large lateral tolerance contactless power-transfer systems,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1590-1598, May 2010.
[54] M. L. G. Kissin, J. T. Boys, and G. A. Covic, “Interphase mutual inductance in polyphase inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2393-2400, Jul. 2009.
[55] M. Budhia, G. A. Covic, and J. T. Boys, “Magnetic design of a three-phase inductive power transfer system for roadway powered electric vehicles,” in Proc. IEEE VPPC, 2010, pp. 1-6.
[56] G. A. Covic, J. T. Boys, and H. G. Lu, “A three-phase inductively coupled power transfer system,” in Proc. IEEE ICIEA, 2006, pp. 1-6.
[57] G. A. Covic, J. T. Boys, M. L. G. Kissin, and H. G. Lu, “A three-phase inductive power transfer system for roadway-powered vehicles,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3370-3378, Dec. 2007.
[58] J. T. Boys, G. A. J. Elliott, and G. A. Covic, “An Appropriate Magnetic Coupling Co-Efficient for the Design and Comparison of ICPT Pickups,” IEEE Trans. Power Electron.,vol. 22, no. 1, pp. 333-335, Jan. 2007.
[59] J. T. Boys, G. A. Covic, and A. W. Green, “Stability and control of inductively coupled power transfer systems,” IEE Proc. Elect. Power Appl., vol. 147, no. 1, pp. 37-43, Jan. 2000.
[60] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. Int. Conf. Power Syst. Technol., 2000, pp. 79-84.
[61] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, Feb. 1995.
[62] Y. Yugang, Y. Dong, and F. C. Lee, “A new coupled inductors design in 2-phase interleaving VRM,” in Proc. IEEE IPEMC, 2009, pp. 344-350.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw