進階搜尋


下載電子全文  
系統識別號 U0026-1208201301421100
論文名稱(中文) 台灣西北部陸海域構造轉換帶特性研究
論文名稱(英文) The Study of Structural Features of Structural Transfer Zones in onshore and offshore Area,Northwestern Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 101
學期 2
出版年 102
研究生(中文) 謝青雲
研究生(英文) Ching-Yun Hsieh
學號 l46991134
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-楊耿明
共同指導教授-張渝龍
口試委員-洪日豪
口試委員-黃旭燦
中文關鍵字 鐵砧山構造  永和山-錦水構造  斷層相關褶皺  湖口斷層 
英文關鍵字 Tiehchanshan structure  Yunghoshan-Chinshui structure  fault-related fold  Hokou fault 
學科別分類
中文摘要 在順時序發展的逆衝斷層帶前緣,任何斷層相關構造代表逆衝斷層帶最初發育的構造特徵。台灣西北部區域受到上新世-更新世蓬萊造山運動影響,發展出兩組斷層系統,分別為一系列東北-西南走向褶皺逆衝帶與東-西走向早期張裂正斷層受到後期擠壓作用反轉成高角度逆斷層。本研究選取涵蓋陸海域的三個區域-鐵砧山構造、永和山-錦水構造以及新竹外海湖口斷層構造,欲瞭解其斷層的發育模式:1. 順時序發育的逆斷層相關褶皺作用;2. 正斷層因擠壓形成的高角度逆斷層與後期順時序發展的逆斷層相互作用關係;3. 正斷層在後期造山運動中,形成的反轉構造。本研究藉由一系列柵狀震測剖面與井下地質資料,進行構造形貌解釋,結合三角剪切模型來分析研究區域的構造演化,建立區域三維構造模型。
鐵砧山構造位於台灣西北部外麓山帶前緣,構造南北段分別為朝山根與前陸方向逆衝之斷層延展褶皺,兩背斜構造皆向構造轉移帶趨於對稱。在構造轉移帶則為向西低角度滑移的逆斷層與深部反向滑移的逆衝楔形體,兩者形成平緩、寬廣的背斜構造。根據轉換帶多重轉折的斷層與背斜形貌認為,北段低角度逆衝斷層受到深部反向滑移的逆衝楔狀體上拱,而形成現今多重轉折的構造形貌。三角剪切模式模擬結果顯示,P/S參數愈靠近構造轉換帶,其值愈大,在褶皺變形階段的變化尤為明顯。隨著斷層面傾角漸小,三角剪切帶對於褶皺形貌的影響亦隨之減小。
永和山-錦水構造位於台灣西北部外麓山帶,永和山構造區域的鹿廚坑斷層具斷坪-斷坡-斷坪之構造形貌,然而該斷層在錦水構造區域轉為高角度逆衝斷層。淺部永和山背斜為兩翼不對稱的褶皺形貌,由早期鹿廚坑斷層作用形成;深部永和山背斜與錦水背斜兩翼較為對稱且平緩,主要由後期基底滑移形成的褶皺構造,由於受到龍港斷層以及高角度的鹿廚坑斷層阻隔,且斷層面亦可能為後期錦水地塊基底滑移時的側邊坡,使得南北形成兩獨立的構造高區。三角剪切模式模擬結果顯示,褶皺主要變形階段的P/S參數與鐵砧山構造相仿。
台灣西北部新竹外海區域位於觀音基盤高區南緣,在更新世晚期受造山運動影響,形成區域內斜向構造反轉以及橫移斷層的構造型態。海域的湖口斷層系統由東西向的橫移斷層向西轉為東北-西南走向。構造東側之東西向橫移斷層為一系列雁型排列之正斷層,因後期擠壓影響,形成高角度逆斷層,伴隨對稱性的褶皺形貌。構造西側則為東-西走向正斷層與東北-西南走向正斷層相互連結時,受到構造反轉作用形成緊密褶皺。
整體而言,構造轉換帶型式可歸納為三種:(1). 以早期正斷層做為反轉滑移斷層,依正斷層的排列以及連接關係形成構造間轉換特性;(2). 早期逆衝斷層傾角的改變影響褶皺構造的連續性,再受到高角度橫移斷層截切,使得後期擠壓作用造就獨立的褶皺構造;(3). 後期逆衝斷層傾角的側向變化,可能代表其為複合型的斷層相關褶皺構造。另外,三角剪切模式中P/S參數的側向變化亦反映出複合的斷層相關褶皺構造。
英文摘要 In the frontal part of a fold-and-thrust belt of in-sequence and ongoing development, all fault-related structures represent the initial features of the following structural evolution. Due to the Penglai orogeny from the Pliocene to Pleistocene, two sets of fault system developed separately as a series of NW-SE fold-thrust belts and E-W high-angle reversed faults, which were extensional normal faults in early stage and finally reactivated by late compression. In this study, we choose three areas including Tiehchanshan structure, Yunghoshan-Chinshui structure and Hukou fault structure in offshore Hsinchu ,and use the following concepts to investigate the evolution of fault structure: 1. In-sequence development of thrust-related folding; 2. The interaction between high-angle thrusts, which are reactivated by compression, and in-sequence development of thrusts during late period; 3. The reversion of normal fault during late orogeny results in the inversion structures. We use a grid of seismic profile and well bore data to interpret subsurface structural geometry, and integrate trishear modeling to analyze the structural evolution, and build a three-dimensional structural model.
The Tiehchanshan structure, located at the front part of outer foothills belt of Northwestern Taiwan, is comprised of two antithetic thrusts as fault-propagation folds. The two anticlines gradually become symmetric toward transfer structure zone, which has a gentle and broad anticline deformed by a westward slipping low-angle thrust and an eastward slipping thrust-wedge. Based on trishear modeling, the P/S ratio increases toward the transfer structure zone. The variations of P/S ratio are especially obvious during folding stage. As the dip of fault plane moderates, the influence of apical angle of trishear zone becomes weaker on fold geometry.
The Yunghoshan-Chinshui structure is located at the outer foothills belt. The Luchukeng fault is characterized by flat-ramp-flat structural geometry in the Yunghoshan structure, but transformed into a high-angle thrust in the Chinshui structure. The shallow and asymmetric Yunghoshan anticline resulted from Luchukeng thrusting in early period. In contrast, the deeper Yunghoshan anticline and Chinshui anticline, both featured by more symmetric and gentle limbs, were caused by basal-detachment fault in late stage. Being obstructed by Lungkang fault and high-angle Luchukeng faults, which might be the lateral ramp during the basal-detachment faulting, the deeper Yunghoshan anticline and Chinshui anticline formed the two isolated structural high areas. The trishear modeling shows that the P/S ratio of main folding stage is similar to the result of the Tiehchanshan structure.
In the offshore Hsinchu, the main structural forms caused by the orogeny during late Pliestocene are oblique-inversion structures and transcurrent fauts. The E-W striking transcurrent faults of Hukou fault system in the eastern part change to NE-SW striking westward. And these transcurrent faults accompanied with symmetric fold geometries are high-angle reverse faults which resulted from normal faults, whose arrangement is en echelon and reactivated by late compression. For the western part of Hukou fault system, the tight fold was formed by the structure inversion when the E-W striking normal fault and the NE-SW striking normal fault were connecting.
On the whole, three types of structural transfer zone can be identified as follows: 1. The structural features of transfer zone are controlled by the arrangements and connected relationship of early normal faults; 2. The continuity of fold geometry is influenced by dips of fault plane, in the meantime, when folds were cut by high-angle transcurrent fault, the fold structures would be formed isolatedly during late compression; 3. The lateral variation of fault plane formed by lately thrust represents the complex fault-related fold structure. Besides, the variation of P/S ratio along strike also reflects the complex fault-related fold structure.
論文目次 摘要 I
ABSTRACT III
誌謝 VI
目錄 VII
表目錄 X
圖目錄 XI
第一章 前言 1
1.1 研究目的 1
1.2 區域地質 3
1.2.1 區域位置 3
1.2.2 岩性地層 8
第二章 前人文獻探討 12
2.1 一般研究 12
2.1.1斷層相關褶皺 12
2.1.2斷層再褶皺作用 15
2.1.3反轉構造 17
2.2 區域研究 20
2.2.1 鐵砧山構造 20
2.2.2 永和山-錦水構造 26
2.2.3 新竹外海橫移構造 31
第三章 研究方法 33
3.1 震測資料處理與分析 33
3.2 三角剪切模式分析 33
3.3 建構地下構造三維模型 37
第四章 鐵砧山構造分析 38
4.1 構造剖面分析 38
4.2 三角剪切模式分析 43
4.3 斷層面三維形貌 52
第五章 永和山-錦水構造分析 55
5.1 地下構造形貌解釋 55
5.2 三角剪切模式分析 62
5.3 斷層面三維形貌 65
第六章 新竹外海湖口斷層構造 67
6.1 震測解釋 67
6.2 斷層面三維形貌 78
6.3 構造演化分析 80
第七章 討論 83
7.1鐵砧山構造轉換帶模型 83
7.2 永和山-錦水構造 86
7.3 新竹外海東-西走向斷層特性 88
7.4 三角剪切模式 88
第八章 結論 90
參考文獻 92
附錄A 97
參考文獻 何春蓀,1982,台灣地體構造的演變─台灣地體構造圖說明書:中華民國經濟部,共110頁。
黃富文、蕭承龍、李長之、盧東郎、周青,1986,新竹苗栗區陸海域木山層及五指山層之沉積與油氣儲集:中油公司七十五年度研究發展專題,經濟部印,143頁。
原振維等,1989,台灣西部第三紀盆地演化與油氣潛能之綜合評估(1/2) ,經濟部七十八年度研究發展專題,286頁。
鍾火盛、胡潮昌、丁志興,1989,新苗外海逆斷層模式之應用,海域石油探勘處七十八年度報告。
紀文榮、黃旭燦、陳瑞瓊,生物地層、構造地質分析及構造平衡法之應用:八十二年度研究專題,中油公司內部報告。
中國石油公司,1994,台灣西部地質圖,苗栗圖幅(1:100000),中國石油公司台灣油礦探勘總務編印。
何信昌,1994,台灣地質圖說明書─苗栗:經濟部中央地質調查所,第十二號,共69頁。
楊耿明、吳榮章、丁信修、王家彬,1994,竹苗麓山帶地下地質構造與油氣儲集:探採研究彙報,第十七期,24-53頁。
鍾開增,1996,苗栗地區麓山帶之地質構造:國立中央大學應用地質研究所碩士論文,共108頁。
楊耿明、黃旭燦、吳榮章、丁信修、梅文威、徐祥宏,2002,台灣陸上斷層帶地質構造與地殼變形調查研究(3/5)-新城斷層及其附近地區:經濟部中央地質調查所。
謝凱旋、張徽正、黃敦友、何信昌、林偉雄、林啟文、陳華玟,2003,台灣地層對比表:經濟部中央地質調查所。
陳培源,2006,台灣地質,台灣省應用地質技師公會,共500頁。
吳明賢,2010,台灣西北部苗栗縣鐵砧山氣田之油氣移棲研究:國立中央大學地球物理研究所博士論文,共143頁。
莊博元,2011,台灣西北部鐵砧山地區三維地下構造分析:國立成功大學地球科學所碩士論文,共81頁。

Allmendinger, R. W., 1998, Inverse and forward numerical modeling of trishear fault-propagation folds: Tectonic, v. 17, pp. 640-656.
Boyer, S. E., and Elliott, D., 1982, Thrust systems: Amer. Assoc. Petrol. Geol. Bull., v. 66, no. 9, p. 1196-1230.
Buchanan, J. G., and Buchanan, P. G., 1995, Basin inversion (eds), Geological Society.
Chang, S. L., 1974, Subsurface geologic study of the Miaoli area, Taiwan: Petrol. Geol. Taiwan, no.11, pp.1-25.
Dahlstrom, C. D. A., 1990, Geometric constrains derived from the law of conservation of volume and applied to evolutionary models for detachment folding: Amer. Assoc. Petrol. Geol. Bull., v. 74, pp. 336-344.
Davis, G. H., Reynolds, S. J., and Kluth, C. F., 2012, Structural geology of rocks and regions (3rd).
Elishewitz, B., 1963, A new interpretation of the structure of the Miaoli area in the light of the decollement tectonics of northwest Taiwan: Petrol. Geol. Taiwan, no. 2, pp. 21-45.
Erslev, E. A., 1991, Trishear fault-propagation folding: Geology, v. 19, pp. 617-620.
Hardy, S., and Ford, M., 1997, Numerical modeling of trishear fault-propagation folding and associated growth strata, Tectonics, v. 16, no. 5, pp. 841-854.
Huang, S. T., Chen, R. C., and Chi, W. R., 1993, Inversion tectonics and evolution of the northern Taihsi Basin, Taiwan: Petrol. Geol. Taiwan, no. 28, p. 15-46.
Hung, J. H., and Wiltschko, D. V., 1993, Structure and kinematics of arcuate thrust faults in the Miaoli-Cholan area of western Taiwan: Petrol. Geol. Taiwan, no. 28, pp. 59-96.
Jones, P. B., 1996, Triangle zone geometry, terminology and kinematics: Bulletin of Canadian Petroleum Geology, v. 44, no. 2, p. 139-152.
Letouzey, J., 1990, Fault reactivation, inversion and fold-thrust belt, in Letouzey, J., eds, Petroleum and Tectonics in Mobile Belts: Technip, Pairs, pp. 101-127.
McClay, K. R., 1992, Glossary of thrust tectonics terms: Thrust Tectonic, 419.
Mitra, S., 1986, Duplex structures and imbricate thrust systems: geometry, structural position, and hydrocarbon potential: Amer. Assoc. Petrol. Geol. Bull., v. 70, p. 1087-1112.
Mitra, S., 1992, Balanced structural interpretations in fold and thrust belts: in S. Mitra and G. W. Fischer, eds., Structural geology of fold and thrust belts: Baltimore, The Johns Hopkins University Press, pp. 53-77.
Mitra, S., 1993, Geometry and kinematic evolution of inversion structures, Amer. Assoc. Petrol. Geol. Bull., v. 77, no. 7, pp. 1159-1191.
Namson, J., 1981, Structure of the western foothills belts, Miaoli-Hsinchu Area, Taiwan: (I) southern part, Petrol. Geol. Taiwan, no. 18, pp. 31-51.
Namson, J., 1983, Structure of the western foothills belts, Miaoli-Hsinchu Area, Taiwan: (II) central part, Petrol. Geol. Taiwan, no. 19, pp. 51-76.
Namson, J., 1984, Structure of the western foothills belts, Miaoli-Hsinchu Area, Taiwan: (III) northern part, Petrol. Geol. Taiwan, no. 20, pp. 35-52.
Shaw, J. H., Connors, C. D., and Suppe, J., 2005, Seismic Interpretation of Contractional Fault-related folds: AAPG Studies in Geology #53, 156p.
Sun, S. C., 1982, The tertiary basins of offshore Taiwan: Proc. Second ASCOPE Conference and Exhibition, pp. 125-135.
Suppe, J., 1983, Geometry and kinematics of fault-bend folding: Am. J. Sci., v. 283, pp. 684-721.
Suppe, J., 1984, Seismic interpretation of the compressively reactivated normal fault near Hsinchu, Western Taiwan: Petrol. Geol. Taiwan, no. 20, pp. 85-96.
Suppe, J., 1985, Principles of structure geology: Prentice-Hall International, Inc., London, 537p.
Suppe, J., and Medwedeff, D. A., 1990, Geometry and kinematics of fault-propagation folding: Eclogae Geol. Helv., v. 83, pp. 409-454.
Suppe, J., and Namson, J., 1979, Fault-bend origin of frontalfolds of the western Taiwan fold-and-thrust belt: Petrol. Geol. Taiwan, no. 16, pp. 1-18.
Wilkerson, M. S., Medwedeff, D. A., and Marshak S., 1991, Geometrical modeling of fault-related folds: a pseudo-three-dimensional approach, Jour. Struc. Geol., v. 13, no. 7, pp. 801-812.
Williams, G. D., Powell, C. M., and Cooper, M. A., 1989, Geometry and kinematics of inversion tectonics, in M. A. Cooper and G. D. Williams, eds., Inversion tectonics: Geological Society Special Publication No. 44, pp. 3-15.
Yang, K. M., Huang, S. T., Wu, J. C., Ting, H. H., and Mei, W. W., 2006, Review and New Insights on Foreland Tectonics in Western Taiwan: Int. Geol., v. 48, pp. 910-941.
Yang, K. M., Huang, S. T., Wu, J. C., Ting, H. H., Mei, W. W., Lee, M., Hsu, H. H., and Lee, C. J., 2007, 3D geometry of the Chelungpu thrust system in central Taiwan: its implications for active tectonics: Terrestrial, Atmospheric and Oceanic Sciences, v. 18, no. 2, pp. 143-181.
Yang, K. M., Ting, H. H., Wu, J. C., and Chi, W. R., 1997, Geological model for complex structures and its implications for hydrocarbon exploration in northwestern Taiwan: Petrol. Geol. Taiwan, no. 31, p. 1-42.
Yang, K. M., Wu, J. C., Wickham, J. S., Ting, H. H., Wang, J. B., and Chi, W. R., 1996, Tranverse structures in Hsinchu and Miaoli areas: Structural mode and evolution in foothills belt, Northwestern Taiwan: Petrol. Geol. Taiwan, no. 30, p. 111-150.
Yang, K. M., Wu, J. C., Ting, H. H., Wang, J. B., Chi, W. R., and Kuo, C. L., 1994, Sequential deformation in foothills belt, Hsinchu and Miaoli areas: Implications in hydrocarbon accumulation: Petrol. Geol. Taiwan, no. 29, pp. 47-74.
Zehnder, A. T., Allmendinger, R. W., 2000, Velocity field for the trishear model: Journal of Structural Geology, v. 22, p. 1009-1014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw