進階搜尋


 
系統識別號 U0026-1208201222471700
論文名稱(中文) 目標物的隨機性對動作學習的影響
論文名稱(英文) Effect of Target Randomness on Motor Learning
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 100
學期 2
出版年 101
研究生(中文) 趙晨光
研究生(英文) Chen-Guang Zhao
學號 T66994036
學位類別 碩士
語文別 英文
論文頁數 64頁
口試委員 口試委員-成戎珠
口試委員-楊政峰
口試委員-黃正雅
指導教授-黃英修
中文關鍵字 訊息理論  動作任務複雜度  力量追蹤活動  事件相關電位 
英文關鍵字 information theory  task complexity  force-matching  event-related potential 
學科別分類
中文摘要 研究目的:依據挑戰點假説(challenge point hypothesis),目標物的訊息量為決定動作複雜度與潛在動作學習效率之重要因子。僅管動作學習效率與訊息量的關係已經被提出多年,但動作任務複雜度如何影響大腦學習後的神經適應性仍然未被深入探討;本研究藉由觀察事件相關電位與施力脈衝的動力學變化,擬釐清目標物軌跡複雜度對力量追蹤活動(force-matching)學習的影響與可能的大腦神經機制。

研究方法:本研究共收取30位20~30歲健康受試者,所有受試者將依照學習目標物可預測性之高低程度,隨機分配至簡單波形組(10位)、複雜波形組(10位)與隨機波形組(10位)。其學習任務為當受試者聽到由系統軟體撥放之聲音訊號時,必須立即按壓施力,以追隨螢幕上所出現之目標物。簡單波形組、複雜波形組與隨機波形組的目標物移動軌跡分別為:0.75 Hz之簡單正弦波、0.6 Hz合併1 Hz之複合波以及類隨機的雜訊波。實驗分成三天執行,每天分別進行學習前測驗(包含4次波形追蹤試驗)、訓練期(10次波形追蹤試驗)及學習後測驗(4次追蹤波形試驗)。受試者將於前測期及後測期須配戴大小適當的32電極的腦電極帽套,以觀測實驗過程中之大腦表面皮質活動的變化。每位受試者慣用手的第一背側骨間肌(first dorsal interosseous)上放置表面肌電訊號電極,以觀測其肌肉收縮情形,並於第一指與第二指尖上方黏貼力量接受器,以記錄其瞬間力量大小。三組學習前後反應時間、手指按壓錯誤量、與腦波事件相關電位均以paired-t檢測是否有明顯不同。同時以單因子變異數分析檢測三組間,在學習前後標準化錯誤量與腦波事件相關電位的標準化差異 ((學習後)-(學習前)/學習前)是否有顯著不同,統計顯著水準p < .05;

實驗結果:學習後,簡單波形與複雜波形組之受試者標準化錯誤量與變異性皆顯著下降。反應時間方面,雖然三組於練習過後皆呈下降的趨勢,卻未達到統計上的顯著性。在事件相關電位上,N1成分於練習後皆呈現下降的趨勢,N1成分下降分布範圍以複雜組較為廣泛(簡單組:FT8、Cz;複雜組: F7、F3、Fz、F4、FCz、Cz、CPz;隨機組: FC3、Cz)且延遲發生。P2 成分在簡單波形組之中央頂葉區域可觀察到正向振幅有下降趨勢。相反的,在複雜與隨機波形組,其正向振幅皆呈現上升趨勢,且隨機組相對於複雜組P2正向振幅上升區域廣泛分布於頂葉至前額葉區域,而複雜組則主要分佈兩側前額葉區。動作電位的發生時間在學習過後,於複雜組與隨機組皆呈現廣泛的下降趨勢。

結論:總結以上研究發現,目標物軌跡複雜度會直接影響力量追蹤活動學習的效果,此外,訊息量的多寡影響大腦資源分布情形並產生獨立的神經適應性。簡單波型組與複雜波型組皆可有效利用視覺訊號所提供的回饋機制促進動作表現,相反的,隨機波形組的動作表現受限於目標物軌跡的不可預測性,過多的目標物訊息量將不利於感覺動作整合與傳遞。
英文摘要 Objective: According to the challenge point hypothesis, the amount of information inherent within target movement is thought to determine task complexity and potential learning benefits of a visuomotor task. Although hypothetical relationship between available information and motor learning has been proposed for years, how task complexity affects the brain plasticity after learning is by far poorly understood. The aim of this study was to investigate the effect of target randomness on effectiveness of force-matching learning, by analyzing force impulse dynamics and event-related potentials (ERP).

Methods: Thirty right-handed healthy subjects will be recruited and randomly assigned to the simple group (n=10), complex group (n=10) and the random group (n=10). Upon hearing the execution signal, the subjects were requested to couple the level of force impulse produced by a thumb-index precision grip to a moving target. The visual targets provided for the simple group, complex group and random group were a 0.75 Hz sinusoidal wave, a combined sinusoidal wave of 0.6 Hz and 1 Hz, as well as a quasi-random wave, respectively. The experiment consisted of pre-test session (4 trials), training session (10 trials), and post-test session (4 trials) for successive three days. Each experimental trial was 120 seconds with 2-minute inter-trial interval for all the three sessions. Event-related potential, movement-related potential, EMG activity of the first dorsal interosseous (FDI) muscle, grip force, and visual target trajectory were recorded. Practice effect on all behavioral and EEG measures before and after practices for each group were defined in form of standardized changes ((Post_test-Pre_test)/(Pre_test)×100%), which were contrasted among three groups to examine the effect of target randomness on motor learning.

Results: Both simple and complex groups demonstrated significant decrement of NFE and variability of NFE after force-matching practices. However, practice did not significantly reduce reaction time for three groups. The results of ERPs indicated that the complex force-matching practice resulted in the greatest zone of N1amplitude reduction (F7, F3, Fz, F4, FCz, Cz, and CPz) and later N1 initiation. N1 suppression was noted at C4/FT8 for the simple group and at Cz/FC3 for the random group, respectively. After practice, P2 was potentiated with greater positivity for the complex and random groups. P2 potentiation was localized in the bilateral frontal lobes for the complex group, but global P2 potentiation from the occipital lobe to frontal lobe was evident for the random group. Both complex and random groups exhibited a larger area of earlier MRP onset than the simple group.

Conclusion:
In summary, practice effect on force-matching tasks was differentially modulated by target predictability. Also, there were distinctive cortical strategies and adaptive plasticity changes for force-matching with differing information demands. Simple condition and complex condition can use target information to improve their performance, however, excessive target information was harmful to sensorimotor integration and sensory-motor transformations for learning a random force-matching maneuver.
論文目次 Abstract I
中文摘要 IV
致謝 VI
Table of Contents VIII
List of Tables X
List of Figures XI
Chapter 1. Introduction 1
1.1 Motor learning from the information theory standpoint 1
1.2 Task complexity and motor learning 2
1.3 Brain plasticity of motor learning 3
1.4 Rationales, research questions, and hypotheses 6
Chapter 2. Methods 8
2.1 Subjects 8
2.2 Procedures and data collection 8
2.2.1 Procedures 8
2.2.2 Experimental settings 10
2.3 Data Analysis 16
2.4 Statistical Analysis 18
Chapter 3. Results 19
3.1 Behavior results 19
3.2 ERP and MRP results 23
Chapter 4. Discussion 43
4.1 Information-dependent practice benefits of force-matching 44
4.2 Information-dependent modulation on ERP and MRP 45
4.2.1 Practice-related N1 modulation in different target conditions 45
4.2.2 Practice-related P2 modulation in different target conditions 47
4.2.3 Practice-related MRP modulation in different target conditions 49
Chapter 5. Conclusion 51
References 52
自述 64
參考文獻 1. Adkin AL, Campbell AD, Chua R, Carpenter MG. The influence of postural threat on the cortical response to unpredictable and predictable postural perturbations. Neurosci Lett. 2008; 435(2):120-5.
2. Adkin AL, Quant S, Maki BE, McIlroy WE. Cortical responses associated with predictable and unpredictable compensatory balance reactions. Exp Brain Res. 2006; 172(1):85-93.
3. Andersen RA, Buneo CA. Intentional maps in posterior parietal cortex. Annu Rev Neurosci. 2002; 25:189-220.
4. Asaad WF, Rainer G, Miller EK.Neural Activity in the Primate Prefrontal Cortex during Associative Learning. Neuron. 1998; 21(6):1399-407.
5. Attneave, F. Applications of information theory to psychology: A summary of basic concepts, methods, and results. 1959, pp. 120. Oxford, England: Henry Holt.
6. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006; 16(6):645-9.
7. Battig WF. The flexibility of human memory, In L. S, Cermak & F. 1. M. Craik (Eds.), Levels of processing and human memory. 1979, pp. 23-44, Hillsdale, NJ: Erlbaum.
8. Blakemore SJ, Sirigu A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003; 153(2):239-245.
9. Broadbent DE. Perception and communication. 1958, pp. 244-267. Elmsford, NY, US: Pergamon Press
10. Catena A, Perales JC, Megías A, Cándido A, Jara E, Maldonado A. The brain network of expectancy and uncertainty processing. PLoS One. 2012; 7(7):e40252.
11. Chiang H, Slobounov SM, Ray W. Practice-related modulations of force enslaving and cortical activity as revealed by EEG. Clin Neurophysiol. 2004; 115(5):1033-1043.
12. Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE. Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature. 1996; 383(6601):618-21.
13. Craighero L, Fadiga L, Rizzolatti G, Umiltà C. Action for perception: a motor-visual attentional effect. J Exp Psychol Hum Percept Perform. 1999; 25:1673-1692.
14. Cui R, MacKinnon CD. The effect of temporal accuracy constraints on movement-related potentials. Exp Brain Res. 2009; 194(3):477-88.
15. Cui RQ, Huter D, Egkher A, Lang W, Lindinger G, Deecke L. High resolution DC-EEG mapping of the Bereitschaftspotential preceding simple or complex bimanual sequential finger movement. Exp Brain Res. 2000; 134(1):49-57.
16. de Azevedo Neto RM, Teixeira LA. Intercepting moving targets: does memory from practice in a specific condition of target displacement affect movement timing? Exp Brain Res. 2011; 211(1):109-17.
17. de Oliveira DL, Corrêa UC, Gimenez R, Basso L, Tani G. Relative frequency of knowledge of results and task complexity in the motor skill acquisition. Percept Mot Skills. 2009; 109(3):831-40.
18. Dumontheil I, Thompson R, Duncan J. Assembly and use of new task rules in fronto-parietal cortex. J Cogn Neurosci. 2011; 23(1):168-82.
19. Fitts, PM. The Information Capacity of the Human Motor System in Controlling the Amplitude of Movement. J Exp Psychol. 1954; 47(6):381-91.
20. Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G.Parietal lobe: from action organization to intention understanding. Science. 2005; 29; 308(5722):662-7.
21. Fogassi L, Luppino G. Motor functions of the parietal lobe. Curr Opin Neurobiol. 2005; 15(6):626-31.
22. Freunberger R, Klimesch W, Doppelmayr M, Höller Y. Visual P2 component is related to theta phase-locking. Neurosci Lett. 2007; 426(3):181-6.
23. Gherri E, Van Velzen J, Eimer M. The instructed context of a motor task modulates covert response preparation and shifts of spatial attention. Psychophysiology. 2009; 46(3):655-67.
24. Grafton ST, Mazziotta JC, Presty S, Friston KJ, Frackowiak RS, Phelps ME. Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci. 1992; 12:2542-8.
25. Grafton ST, Schmitt P, Van Horn J, Diedrichsen J. Neural substrates of visuomotor learning based on improved feedback control and prediction. Neuroimage. 2008; 39(3):1383-95.
26. Guadagnoli MA, Lee TD. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004; 36(2):212-24.
27. Haken H, Kelso JA, Bunz H. A theoretical model of phase transitions in human hand movements. Biol Cybern. 1985; 51(5):347-56.
28. Hanakawa T, Honda M, Zito G, Dimyan MA, HallettM. Brain activity during visuomotor behavior triggered by arbitrary and spatially constrained cues: an fMRI study in humans. Exp Brain Res. 2006; 172(2):275-82.
29. Harmon-Jones E, Gable PA. Neural activity underlying the effect of approach-motivated positive affect on narrowed attention. Psychol Sci. 2009; 20(4):406-9.
30. Hillyard SA, Anllo-Vento L. Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci USA. 1998; 95(3):781-7.
31. Hillyard SA, Hink RF, Schwent VL, Picton TW. Electrical signs of selective attention in the human brain. Science. 1973; 182(4108):177-80.
32. Hillyard SA, Squires KC, Bauer JW, Lindsay PH. Evoked potential correlates of auditory signal detection. Science. 1971; 172(3990):1357-60.
33. Hillyard SA, Vogel EK, Luck SJ. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Lond B Biol Sci. 1998; 353(1373):1257-70.
34. Huang CY, Hwang IS. Behavioral data and neural correlates for postural prioritization and flexible resource allocation in concurrent postural and motor tasks. Hum Brain Mapp. 2011; doi: 10.1002/hbm.21460
35. Jahanshahi M, Dirnberger G, Liasis A, Towell A, Boyd S. Does the pre-frontal cortex contribute to movement-related potentials? Recordings from subdural electrodes. Neurocase. 2001; 7(6):495-501.
36. Klingberg T. Development of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia. 2006; 44(11):2171-7.
37. Kobayashi M, Théoret H, Pascual-Leone A. Suppression of ipsilateral motor cortex facilitates motor skill learning. Eur J Neurosci. 2009; 29(4):833-6.
38. Kotchoubey B. Event-related potentials, cognition, and behavior: a biological approach. Neurosci Biobehav Rev. 2006; 30(1):42-65.
39. Làdavas E, Serino A. Action-dependent plasticity in peripersonal space representations. Cogn Neuropsychol. 2008; 25(7-8):1099-113.
40. Laguna PL. Task complexity and sources of task-related information during the observational learning process. J Sports Sci. 2008; 26(10):1097-113.
41. Lang W, Zilch O,Koska C, Lindinger G, Deecke L. Negative cortical DC shifts preceding and accompanying simple and complex sequential movements. Exp Brain Res. 1989; 74:99–104.
42. Lewis PA, Miall RC. A right hemispheric prefrontal system for cognitive time measurement. Behav Processes. 2006; 71(2-3):226-34.
43. Light KE. Information processing for motor performance in aging adults. Phys Ther. 1990; 70(12):820-6.
44. Lin CH, Chiang MC, Wu AD, Iacoboni M, Udompholkul P, Yazdanshenas O, Knowlton BJ. Enhanced motor learning in older adults is accompanied by increased bilateral frontal and fronto-parietal connectivity. Brain Connect. 2012; 2(2):56-68.
45. Lin CH, Chiang MC, Knowlton BJ, Iacoboni M, Udompholkul P, Wu AD. Interleaved practice enhances skill learning and the functional connectivity of fronto-parietal networks. Hum Brain Mapp. 2012; doi: 10.1002/hbm.22009.
46. Luck SJ, Hillyard SA. Electrophysiological correlates of feature analysis during visual search. Psychophysiology. 1994; 31(3):291-308.
47. Magill RA. Modeling and verbal feedback influences on skill learning. Int J Sport Psychol. 1993; 24:358–369.
48. Mark A. Guadagnoli, Timothy D. Lee. Challenge Point: A framework for conceptualizing the effects of various practice condition in motor learning. J Motor Behav. 2004; 36(2):212-224.
49. McCullagh P, Weiss MR. Modeling: Considerations for motor skill performance and psychological responses. In R. N. Singer, H. A. Hausenblas & C.M. Janelle (Eds.), Handbook of sport psychology. 2001, pp. 205-238. Wiley Publishers.
50. Michie PT, Solowij N, Crawford JM, Glue LC. The effects of between-source discriminability on attended and unattended auditory ERPs. Psychophysiology. 1993; 30(2):205-220.
51. Miller GA. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review. 1956; 63(2):81-97.
52. Miller GA, Galanter E, Pribram KH. Plans and the Structure of Behavior. 1960, New York: Holt, Rinehart & Winston.
53. Milner AD, Goodale MA. The Visual Brain in Action. Oxford University Press, 1995; Oxford.
54. Monfils MH, Plautz EJ, Kleim JA. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. Neuroscientist. 2005; 11(5):471-83.
55. Müller RA, Kleinhans N, Pierce K, Kemmotsu N, Courchesne E. Functional MRI of motor sequence acquisition: effects of learning stage and performance. Brain Res Cogn Brain Res. 2002; 14(2):277-93.
56. Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology. 1987; 24(4):375-425.
57. Näätänen R, Teder W, Alho K, Lavikainen J. Auditory attention and selective input modulation: a topographical ERP study. Neuroreport. 1992; 3(6):493-6.
58. Nash AJ, Williams CS. Effects of preparatory set and task demands on auditory event-related potentials. Biol Psychol. 1982; 15(1-2):15-31.
59. Naylor JC, Briggs GE. Effects of task complexity and task organization on the relative efficiency of part and whole training methods. J Exp Psychol. 1963; 65:217-24.
60. Newell KM. Skill learning. In D. Holding (Ed.), Human skills. 1981, pp. 203–226. New York: Wiley.
61. Newell KM, Broderick MP, Deutsch KM, Slifkin AB. Task goals and change in dynamical degrees of freedom with motor learning. J Exp Psychol Hum Percept Perform. 2003; 29(2):379-87.
62. Picton TW, Lins OG, Scherg M, In Handbook of neurophysiology, eds. Boller F. & Granfman J (Elsevier Science, Amsterdam), 1994; Vol. 9, pp.429-499.
63. Poldrack RA. Imaging brain plasticity: conceptual and methodological issues: a theoretical review. Neuroimage. 2000; 12(1):1-13.
64. Quant S, Adkin AL, Staines WR, Maki BE, McIlroy WE. The effect of a concurrent cognitive task on cortical potentials evoked by unpredictable balance perturbations. BMC Neurosci. 2004; 17; 5:18.
65. Rahnev D, Lau H, de Lange FP. Prior expectation modulates the interaction between sensory and prefrontal regions in the human brain. J Neurosci. 2011; 31(29):10741-8.
66. Robbins TW. Arousal systems and attentional processes. Biol Psychol. 1997; 45(1-3):57-71.
67. Romei V, Thut G, Ramos-Estebanez C, Pascual-Leone A. M1 contributes to the intrinsic but not the extrinsic components of motor-skills. Cortex. 2009; 45(9):1058-64.
68. Rose M, Verleger R, Wascher E. ERP correlates of associative learning. Psychophysiology. 2001; 38(3):440-50.
69. Seidler RD, Noll DC, Thiers G. Feedforward and feedback processes in motor control. Neuroimage. 2004; 22(4):1775-83.
70. Shannon CE, Weaver W. The mathematical theory of communication. Urbaba. 1949, University of Illinois Press.
71. SheaJB, Zimny ST. Knowledge incorporation in motor representation. In Meijer OG, Roth K. (Eds.), Complex movement behavior: The motor-action controversy. 1988, pp. 289-314. New York: North Holland.
72. Sidaway B, Bates J, Occhiogrosso B, Schlagenhaufer J, Wilkes D. Interaction of feedback frequency and task difficulty in children's motor skill learning. Phys Ther. 2012; 92(7):948-57.
73. Simonetta M, Clanet M, Rascol O. Bereitschaftspotential in a simple movement or in a motor sequence starting with the same simple movement. Electroencephalogr Clin Neurophysiol. 1991; 81(2):129-34.
74. Slifkin AB, Newell KM. Newell. Noise, Information Transmission, and Force Variability. J Exp Psychol Hum Percept Perform. 1999; 25(3):837-51.
75. Slobounov S, Johnston J, Chiang H, Ray W. Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment. Clin Neurophysiol. 2002; 113(7):1125-1135.
76. Slobounov SM, Ray WJ. Movement-related potentials with reference to isometric force output in discrete and repetitive tasks. Exp Brain Res. 1998; 123(4):461-473.
77. Smyth C, Summers JJ, Garry MI. Differences in motor learning success are associated with differences in M1 excitability. Hum Mov Sci. 2010; 29(5):618-30.
78. Staines WR, Padilla M, Knight RT. Frontal-parietal event-related potential changes associated with practising a novel visuomotor task. Brain Res Cogn Brain Res. 2002; 13(2):195-202.
79. Ungerleider, L.G. and Mishkin, M. Two cortical visual systems. In D.J. Ingle, M.A. Goodale, and R.J.W. Mansfield (Eds.), Analysis of visual behavior. 1982; Cambridge, MA: MIT Press
80. Van Der Helden J, Boksem MA. Medial frontal negativity reflects learning from positive feedback. Psychophysiology. Epub 2012 Jun 21. doi: 10.1111/j.1469-8986.2012.01388.x.
81. Westendorff S, Klaes C, Gail A. The cortical timeline for deciding on reach motor goals. J Neurosci. 2010; 30(15):5426-36.
82. Willingham DB. A neuropsychological theory of motor skill learning. Psychol Rev. 1998; 105(3):558-84.
83. Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci. 2000; 3 Suppl:1212-7.
84. Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science. 1995; 269(5232):1880-2.
85. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998; 2(9):338-47.
86. Wood RE. Task Complexity: Definition of the Construct. Organ Behav Hum Dec. 1986; 37:60-82.
87. Zaksas D, Pasternak T. Directional signals in the prefrontal cortex and in area MT during a working memory for visual motion task. J Neurosci. 2006; 26(45):11726-42.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw