進階搜尋


下載電子全文  
系統識別號 U0026-1208201121363600
論文名稱(中文) 神經復健機器人於中風病患肩肘與前臂關節不正常協同動作之評估及治療
論文名稱(英文) Neuro-rehabilitation robot-assisted assessment and treatment of abnormal synergies of shoulder, elbow and forearm joints in stroke patients
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 龔品誠
研究生(英文) Pin-Cheng Kung
學號 n1893123
學位類別 博士
語文別 中文
論文頁數 138頁
口試委員 召集委員-蔡明俊
口試委員-陳家進
口試委員-林昭宏
口試委員-楊秉祥
指導教授-朱銘祥
共同指導教授-林宙晴
中文關鍵字 中風  不正常協同動作  上肢  復健  機器人  位置/力量混合控制  被動拉伸  肌電訊號  主成分分析 
英文關鍵字 stroke  abnormal synergies  upper limb  rehabilitation  robot  hybrid position/force control  passive stretching  electromyogram  principal component analysis 
學科別分類
中文摘要 中風病患在復原初期自主動作時會伴隨產生不正常協同動作,病患會因不正常協同動作而無法獨力完成單一關節控制,上肢不正常協同動作可分成屈肌協同與伸肌協同,屈肌協同指的是當患側肘關節進行屈曲時,肩關節會伴隨產生外展動作,前臂伴隨產生旋後動作,而伸肌協同指的是當肘關節進行伸展時,肩關節會伴隨產生內收動作,前臂會伴隨產生旋前動作,經復健治療後此不正常協同動作會漸進消失,回復至接近正常動作。上肢的不正常協同動作包含了肩肘與前臂關節,目前文獻中較少具有能同時提供這3個關節復健的裝置,若有一套復健裝置能同時針對這3個關節進行評估與治療,將有助於深入了解不正常協同動作與病患復原過程中不正常協同動作的變化,本研究以先前發展的兩自由度肩肘機器人為基礎,擴充前臂旋轉自由度,並規劃不同方向直線軌跡追蹤訓練,建立客觀量化指標,長期評估病患在復健過程中不正常協同動作變化。
為了仿效物理治療師的手法,本研究實現位置/力量混合控制,使肩肘復健機器人能在病患進行軌跡追蹤時施予適當的阻力或助力,並維持在一定的軌跡上。本研究也開發一套前臂復健機器人,其可單獨針對病患前臂進行旋後復健,也可與肩肘機器人整合,透過兼具控制速度與扭力的控制法則使前臂機器人能有效進行旋前肌拉伸。為了量化與治療中風病患不正常協同動作,本研究針對肩、肘及前臂設計3種不同臨床實驗:(1)4個方向直線軌跡追蹤並維持4個月機器人密集訓練與4個月定期追蹤、(2)前臂旋後拉伸及(3)弧線軌跡追蹤結合前臂旋後拉伸。本研究一共招募18位中風病患與8位年紀相當的常人進行比較,利用實驗中所量測到的運動學與動力學資料發展出3個量化性力學指標,也利用量測到的8條肌電訊號透過主成分分析發展出1個肌電訊號指標。
經實驗證實,中風病患患側因不正常協同動作,使其肘關節角度與前臂主動扭矩呈現高度相關,符合屈肌協同與伸肌協同動作,並導致產生較大的前臂扭矩,而肩肘關節互為拮抗的肌群也因不正常協同動作而有不正常共同收縮現象,在4個不同方向的直線軌跡運動中都採用相同的運動策略。經由4個月密集式機器人訓練後,顯示病患不正常協同動作可獲得改善,量化性指標與臨床指標都具有顯著差異,經訓練後病患已較能獨立控制單關節運動,呈現較少的不正常協同動作,關節協調性趨近於常人。在後續4個月定期追蹤下,量化性指標與臨床指標都呈現逐步回復的趨勢,但並未回復到未訓練前的狀態,顯示機器人的療效至少能維持4個月。本研究發展的客觀量化性指標除了能反映出病患不正常協同動作,也能分析出病患運動功能復原的情形,兼具量化肩肘與前臂關節間的動作。在不同方向直線軌跡追蹤實驗裡,由結果歸納出屬於獨立單關節運動的直線方向,較適合用來降低不正常協同動作。根據前臂旋後拉伸結果,顯示經拉伸後被動關節活動範圍有顯著增加,證明本研究發展之前臂復健機器人確實具有被動拉伸的療效。此外肩肘與前臂復健機器人兼具評估與治療功能,有助於日後臨床上治療師的運用。
英文摘要 At the initial stage of recovery, the voluntary movement was combined with abnormal synergies in the affected limbs of stroke patients. Because of these synergies, the patients cannot exercise independent joint control during different movements. In the upper limbs, the abnormal synergies include the flexor synergy (characterized by simultaneous shoulder abduction, elbow flexion, and forearm supination) and the extensor synergy (characterized by simultaneous shoulder adduction, elbow extension, and forearm pronation). After a period of treatment, abnormal synergies may be broken down and voluntary normal movements are facilitated. The abnormal synergies were involved with the shoulder, elbow and forearm joints. In recent literatures, only few devices could provide rehabilitation in these three joints simultaneously. A rehabilitation device that covers these three joints and executes assessment and treatment may provide insights and time-course variation of abnormal synergies during recovery. Based on previous two degree-of-freedom shoulder-elbow rehabilitation robot, one degree-of-freedom for forearm rotation was extended in this study. The study also designed different directions of rectilinear tracking movements and developed objective quantitative assessment indices as well as long-term assessed of the time course of abnormal synergies during robot treatment.
For mimicking phasical therapist’s manual movement, the hybrid position/force control was realized at shoulder-elbow rehabilitation robot in this study. The robot could apply either resistant or assistant force along the moving direction while the movement was confined on a predefined trajectory. A new forearm rehabilitation device was developed to assist the patients in performing both passive and active forearm pronation/supination. The device also could be integrated into our shoulder-elbow rehabilitation robot. A new controller that combined both constant speed and constant torque approaches for effective passive stretching of forearm was also developed. For quantifying and treating abnormal synergies, this study designed three clinical trials: (1) four directions of rectilinear tracking movements for four months of robot-assisted treatments and four months of follow-up, (2) forearm passive supination stretching movement and (3) combined arc tracking movement and forearm passive supination stretching movement. Eighteen stroke patients and eight age-matched control subjects were recruited for this study. Kinematic, kinetic and electromyograms of eight muscles were recorded and used to develop three biomechanical indices and one electromyogram assessment index based on principal component analysis.
Because the abnormal synergies, higher correlation between the elbow joint angle and the forearm pronation/supination torque, higher variation of the forearm torque, and abnormal co-contraction of the elbow and shoulder antagonistic muscles were observed in the affected limbs of stroke patients. The patients use only one motor strategy to perform four different directions of tracking movements with their affected limbs. After four months of robot-assisted treatment, the robotic indices and clinical scales showed significant improvement of abnormal synergies. The patients could perform more isolated joint movements with less synergy, the joint coordination also approached normalcy. During the follow-up, the robotic indices and clinical scales showed gradual regression but they did not return to the initial status before starting the robotic-assisted treatment. The therapeutical effects of adding the robot-assisted therapy lasted more than 4 months. The proposed objective quantitative assessment indices could not only be employed to quantify the abnormal synergies that covered the shoulder, elbow and forearm joints but also to reflect modifications in motor functions during the recovery. The rectilinear tracking movements belong to isolated movement were more suitable for robot-assisted movement treatment to reduce the abnormal synergies. In the forearm passive supination stretching movemt, the passive range of motion was significant increased after stretching the stroke patients’ pronators. The forearm rehabilitation device could provide effective treatment of passive stretching for the stroke patients. In addition, the shoulder-elbow and forearm rehabilitation robots could provide both assessmet and treatment functions. These robots may serve as an aid for clinical physical therapy of stroke patients in the future.
論文目次 中文摘要 i
Abstract iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 x
符號說明 xvii
第一章 緒論 1
1.1 中風復健與臨床現況 1
1.2 上肢不正常協同動作 5
1.3 文獻回顧 8
1.3.1 上肢復健機器人 8
1.3.2 不正常協同動作評估與復健 14
1.4 研究動機與目的 17
1.5 本文架構 19
第二章 研究方法與實驗設計 20
2.1 肩肘復健機器人 20
2.1.1 肩肘機器人結構與系統建構 20
2.1.2 肩肘機器人位置/力量混合控制 23
2.2 前臂復健機器人 27
2.2.1 前臂機器人結構與系統建構 27
2.2.2 前臂機器人被動拉伸控制 31
2.2.3 前臂機器人主動扭矩控制 33
2.3 整合肩肘與前臂復健機器人 35
2.4 復健動作設計與人體實驗流程 37
2.4.1 直線軌跡追蹤實驗 37
2.4.2 前臂旋後拉伸實驗 40
2.4.3 弧線軌跡追蹤結合前臂旋後拉伸實驗 41
2.4.4 受測者資料 42
2.5 量化性評估指標 46
2.5.1 力學評估指標 46
2.5.2 肌電訊號評估指標 48
2.5.3 統計分析 54
第三章 結果 57
3.1 肩肘復健機器人控制評估 57
3.1.1 定點控制 57
3.1.2 直線軌跡控制 59
3.1.3 弧線軌跡控制 61
3.2 前臂復健機器人控制評估 62
3.2.1 被動拉伸控制 62
3.2.2 主動扭矩控制 63
3.3 直線軌跡追蹤實驗 64
3.3.1 常人與病患上肢不正常協同動作評估 64
3.3.2 病患密集4個月訓練與4個月定期追蹤下療效評估 95
3.4 前臂旋後拉伸實驗 101
3.4.1 肌肉被動特性評估 101
3.4.2 旋後拉伸前後肌肉被動特性差異 102
3.5 弧線軌跡追蹤結合前臂旋後拉伸實驗 104
3.5.1 病患上肢不正常協同動作評估 104
3.5.2 旋後拉伸前後不正常協同動作特性差異 109
第四章 討論 110
4.1 上肢不正常協同動作分析 110
4.1.1 常人與病患動作特性比較 110
4.1.2 不同直線軌跡追蹤方向差異 113
4.1.3 密集4個月訓練與4個月定期追蹤下病患動作特性變化 115
4.2 前臂旋後拉伸分析 119
4.2.1 病患肌肉被動拉伸特性 119
4.2.2 旋後拉伸前後上肢不正常協同動作變化 120
4.3 本文貢獻與臨床運用 121
第五章 結論與未來展望 123
5.1 結論 123
5.2 未來展望 125
參考文獻 127
簡 歷 136
參考文獻 [1] P. W. Duncan and M. B. Badke. Stroke rehabilitation :the recovery of motor control. Year Book Medical Publishers, Chicago, 1987.
[2] 胡名霞, "中風病患之物理治療-現代觀念及效益," 中華民國物理治療學會雜誌, 23: 202-209, 1998.
[3] 吳宏嘉, "冷熱刺激法對於中風病人上肢動作與功能恢復的療效," 高雄醫學大學醫學系神經學科碩士論文, 2009.
[4] 徐欣妏, "「溫度刺激」對於中風病人下肢動作與功能恢復的療效," 高雄醫學大學醫學系神經學科碩士論文, 2011.
[5] A. Pollock, G. Baer, V. Pomeroy and P. Langhorne, "Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke," Cochrane Database Syst Rev, CD001920, 2007.
[6] B. Bobath. Adult hemiplegia : evaluation and treatment. Heinemann Medical Books, Oxford England, 1990.
[7] A. Shumway-Cook and M. H. Woollacott. Motor control : theory and practical applications. Lippincott Williams & Wilkins, Philadelphia, 2001.
[8] S. S. Adler, D. Beckers and M. Buck. PNF in practice : an illustrated guide. Springer-Verlag, Berlin ; New York, 1993.
[9] N. Flinn, "A task-oriented approach to the treatment of a client with hemiplegia," Am J Occup Ther, 49: 560-9, 1995.
[10] F. B. Horak, "Assumptions underlying motor control for neurologic rehabilitation," in Contemporary management of motor control problems 4, (Ed), Alexandria, VA, pp. 11-28, 1991.
[11] S. Hakkennes and J. L. Keating, "Constraint-induced movement therapy following stroke: A systematic review of randomised controlled trials," Aust. J. Physiother., 51: 221-231, 2005.
[12] K. C. Lin, C. Y. Wu, J. S. Liu, Y. T. Chen and C. J. Hsu, "Constraint-Induced Therapy Versus Dose-Matched Control Intervention to Improve Motor Ability, Basic/Extended Daily Functions, and Quality of Life in Stroke," Neurorehabil. Neural Repair, 23: 160-165, 2009.
[13] G. F. Wittenberg, R. Chen, K. Ishii, K. O. Bushara, E. Taub, L. H. Gerber, M. Hallett and L. G. Cohen, "Constraint-induced therapy in stroke: Magnetic-stimulation motor maps and cerebral activation," Neurorehabil. Neural Repair, 17: 48-57, 2003.
[14] T. Gerachshenko, W. Z. Rymer and J. W. Stinear, "Abnormal corticomotor excitability assessed in biceps brachii preceding pronator contraction post-stroke," Clin. Neurophysiol., 119: 683-692, 2008.
[15] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins and T. Kanade. Footstep planning for the Honda ASIMO humanoid. IEEE International Conference on Robotics and Automation. Barcelona, Spain 2005:629-634.
[16] P. Michel, J. Chestnutt, J. Kuffner and T. Kanade. Vision-guided humanoid footstep planning for dynamic environments. 5th IEEE-RAS International Conference on Humanoid Robots 2005:13-18.
[17] S. Brunnstrom. Movement Therapy in Hemiplegia. Harper & Row, New York, 1970.
[18] M. E. Brandstater and J. V. Basmajian, "Sensorimotor Neurophysiology and the Basis of Neurofacilitation Therapeutic Techniques," in Stroke Rehabilitation 5, J. Butler (Ed), Baltimore, MD 21202, U.S.A, pp. 109-182, 1987.
[19] A. A. A. Timmermans, H. A. M. Seelen, R. D. Willmann and H. Kingma, "Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design," J. NeuroEng. Rehabil., 6: 1-18, 2009.
[20] V. S. Huang and J. W. Krakauer, "Robotic neurorehabilitation: a computational motor learning perspective," J. NeuroEng. Rehabil., 6: 1-13, 2009.
[21] G. Kwakkel, B. J. Kollen and H. I. Krebs, "Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review," Neurorehabil. Neural Repair, 22: 111-121, 2008.
[22] M. L. Aisen, H. I. Krebs, N. Hogan, F. McDowell and B. T. Volpe, "The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke," Arch. Neurol., 54: 443-446, 1997.
[23] H. I. Krebs, B. T. Volpe, M. L. Aisen and N. Hogan, "Increasing productivity and quality of care: Robot-aided neuro-rehabilitation," J. Rehabil. Res. Dev., 37: 639-652, 2000.
[24] A. R. Fugl-Meyer, L. Jaasko and I. Leyman, "The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance," Scand. J. Rehabil. Med., 7: 13-31, 1975.
[25] B. B. Hamilton, J. A. Laughlin, R. C. Fiedler and C. V. Granger, "Interrater reliability of the 7-level functional independence measure (FIM)," Scand. J. Rehabil. Med., 26: 115-119, 1994.
[26] B. T. Volpe, H. I. Krebs, N. Hogan, L. Edelstein, C. Diels and M. Aisen, "A novel approach to stroke rehabilitation - Robot-aided sensorimotor stimulation," Neurology, 54: 1938-1944, 2000.
[27] S. E. Fasoli, H. I. Krebs, J. Stein, W. R. Frontera, R. Hughes and N. Hogan, "Robotic therapy for chronic motor impairments after stroke: Follow-up results," Arch. Phys. Med. Rehabil., 85: 1106-1111, 2004.
[28] J. J. Daly, N. Hogan, E. M. Perepezko, H. I. Krebs, J. M. Rogers, K. S. Goyal, M. E. Dohring, E. Fredrickson, J. Nethery and R. L. Ruff, "Response to upper-limb robotics and functional neuromuscular stimulation following stroke," J. Rehabil. Res. Dev., 42: 723-736, 2005.
[29] B. T. Volpe, D. Lynch, A. Rykman-Berland, M. Ferraro, M. Galgano, N. Hogan and H. I. Krebs, "Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke," Neurorehabil. Neural Repair, 22: 305-310, 2008.
[30] H. I. Krebs, B. T. Volpe, D. Williams, J. Celestino, S. K. Charles, D. Lynch and N. Hogan, "Robot-aided neurorehabilitation: A robot for wrist rehabilitation," IEEE Trans. Neural Syst. Rehabil. Eng., 15: 327-335, 2007.
[31] D. J. Edwards, H. I. Krebs, A. Rykman, J. Zipse, G. W. Thickbroom, F. L. Mastaglia, A. Pascual-Leone and B. T. Volpe, "Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke," Restor. Neurol. Neurosci., 27: 199-207, 2009.
[32] H. I. Krebs and N. Hogan, "Therapeutic robotics: A technology push," Proc. IEEE, 94: 1727-1738, 2006.
[33] L. Dipietro, M. Ferraro, J. J. Palazzolo, H. I. Krebs, B. T. Volpe and N. Hogan, "Customized interactive robotic treatment for stroke: EMG-triggered therapy," IEEE Trans. Neural Syst. Rehabil. Eng., 13: 325-334, 2005.
[34] Interactive Motion Technologies, Inc. [cited; Available from: http://interactive-motion.com/html/hardware.htm
[35] D. J. Reinkensmeyer, L. E. Kahn, M. Averbuch, A. McKenna-Cole, B. D. Schmit and W. Z. Rymer, "Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM guide," J. Rehabil. Res. Dev., 37: 653-662, 2000.
[36] L. E. Kahn, M. L. Zygman, W. Z. Rymer and D. J. Reinkensmeyer, "Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study," J. NeuroEng. Rehabil., 3: 1-13, 2006.
[37] C. G. Burgar, P. S. Lum, P. C. Shor and H. F. M. Van der Loos, "Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience," J. Rehabil. Res. Dev., 37: 663-673, 2000.
[38] P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar and M. Van der Loos, "Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke," Arch. Phys. Med. Rehabil., 83: 952-959, 2002.
[39] P. S. Lum, C. G. Burgar, M. Van der Loos, P. C. Shor, M. Majmundar and R. Yap, "MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study," J. Rehabil. Res. Dev., 43: 631-642, 2006.
[40] R. Loureiro, F. Amirabdollahian, M. Topping, B. Driessen and W. Harwin, "Upper limb robot mediated stroke therapy - GENTLE/s approach," Auton. Robot., 15: 35-51, 2003.
[41] F. Amirabdollahian, R. Loureiro, E. Gradwell, C. Collin, W. Harwin and G. Johnson, "Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy," J. NeuroEng. Rehabil., 4: 2007.
[42] S. Hesse, G. Schulte-Tigges, M. Konrad, A. Bardeleben and C. Werner, "Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects," Arch. Phys. Med. Rehabil., 84: 915-920, 2003.
[43] S. Hesse, C. Werner, M. Pohl, S. Rueckriem, J. Mehrholz and M. L. Lingnau, "Computerized arm training improves the motor control of the severely affected arm after stroke - A single-blinded randomized trial in two centers," Stroke, 36: 1960-1966, 2005.
[44] S. Hesse, C. Werner, M. Pohl, J. Mehrholz, U. Puzich and H. I. Krebs, "Mechanical arm trainer for the treatment of the severely affected arm after a stroke - A single-blinded randomized trial in two centers," Am. J. Phys. Med. Rehabil., 87: 779-788, 2008.
[45] R. Colombo, F. Pisano, S. Micera, A. Mazzone, C. Delconte, M. C. Carrozza, P. Dario and G. Minuco, "Robotic techniques for upper limb evaluation and rehabilitation of stroke patients," IEEE Trans. Neural Syst. Rehabil. Eng., 13: 311-324, 2005.
[46] R. Colombo, F. Pisano, S. Micera, A. Mazzone, C. Delconte, M. C. Carrozza, P. Dario and G. Minuco, "Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb," Neurorehabil. Neural Repair, 22: 50-63, 2008.
[47] E. T. Wolbrecht, V. Chan, D. J. Reinkensmeyer and J. E. Bobrow, "Optimizing compliant, model-based robotic assistance to promote neurorehabilitation," IEEE Trans. Neural Syst. Rehabil. Eng., 16: 286-297, 2008.
[48] T. Nef, M. Mihelj and R. Riener, "ARMin: a robot for patient-cooperative arm therapy," Med. Biol. Eng. Comput., 45: 887-900, 2007.
[49] J. Stein, K. Narendran, J. McBean, K. Krebs and R. Hughes, "Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke," Am. J. Phys. Med. Rehabil., 86: 255-261, 2007.
[50] K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa and Y. Sankai, "Intention-based walking support for paraplegia patients with Robot Suit HAL," Advanced Robotics, 21: 1441-1469, 2007.
[51] 陳佳萬、張至宏、章勳、游文瑞, "手肘關節復健機之研究與製作," 亞東學報, 24: 7-1-7-4, 2004.
[52] 賴金鑫、陳文翔、王威文、傅立成、陳士維、郭德盛, "最新研發的上肢復健機器人," 台大醫院健康電子報, 19期: 2009.
[53] 陳秋旺、朱銘祥、謝孟達、張慧怡、陳家進, "肘關節復健用機械人之研究," 醫學工程科技研討會, 150-151, 1999.
[54] M. S. Ju, C. C. K. Lin, D. H. Lin, I. S. Hwang and S. M. Chen, "A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot," IEEE Trans. Neural Syst. Rehabil. Eng., 13: 349-358, 2005.
[55] P.-C. Kung, M.-S. Ju and C.-C. K. Lin, "Design of a forearm rehabilitation robot," IEEE Int. Conf. on Rehabilitation Robotics, 228-233, 2007.
[56] P.-C. Kung, C.-C. K. Lin, M.-S. Ju and S.-M. Chen. Time course of abnormal synergies of stroke patients treated and assessed by a neuro-rehabilitation robot. IEEE Int. Conf. on Rehabilitation Robotics. Kyoto International Conference Center, Japan 2009:12-17.
[57] L. Marchal-Crespo and D. J. Reinkensmeyer, "Review of control strategies for robotic movement training after neurologic injury," J. NeuroEng. Rehabil., 6: 2009.
[58] H. I. Krebs, J. J. Palazzolo, L. Dipietro, B. T. Volpe and N. Hogan, "Rehabilitation robotics: Performance-based progressive robot-assisted therapy," Auton. Robot., 15: 7-20, 2003.
[59] M. Mihelj, T. Nef and R. Riener, "A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots," Advanced Robotics, 21: 843-867, 2007.
[60] R. J. Sanchez, J. Y. Liu, S. Rao, P. Shah, R. Smith, T. Rahman, S. C. Cramer, J. E. Bobrow and D. J. Reinkensmeyer, "Automating arm movement training following severe stroke: Functional exercises with quantitative feedback in a gravity-reduced environment," IEEE Trans. Neural Syst. Rehabil. Eng., 14: 378-389, 2006.
[61] M. Frey, G. Colombo, M. Vaglio, R. Bucher, M. Jorg and R. Riener, "A novel mechatronic body weight support system," IEEE Trans. Neural Syst. Rehabil. Eng., 14: 311-321, 2006.
[62] R. Song, K. Y. Tong, X. L. Hu and L. Li, "Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke," IEEE Trans. Neural Syst. Rehabil. Eng., 16: 371-379, 2008.
[63] J. P. A. Dewald, P. S. Pope, J. D. Given, T. S. Buchanan and W. Z. Rymer, "Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects," Brain, 118: 495-510, 1995.
[64] J. P. A. Dewald and R. F. Beer, "Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis," Muscle Nerve, 24: 273-283, 2001.
[65] R. F. Beer, J. P. A. Dewald, M. L. Dawson and W. Z. Rymer, "Target-dependent differences between free and constrained arm movements in chronic hemiparesis," Exp. Brain Res., 156: 458-470, 2004.
[66] M. D. Ellis, B. G. Holubar, A. M. Acosta, R. F. Beer and J. P. A. Dewald, "Modifiability of abnormal isometric elbow and shoulder joint torque coupling after stroke," Muscle Nerve, 32: 170-178, 2005.
[67] T. M. Sukal, M. D. Ellis and J. P. A. Dewald, "Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications," Exp. Brain Res., 183: 215-223, 2007.
[68] M. D. Ellis, T. Sukal, T. DeMott and J. P. A. Dewald, "Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading," Neurorehabil. Neural Repair, 22: 321-329, 2008.
[69] P. S. Lum, C. G. Burgar and P. C. Shor, "Evidence for strength imbalances as a significant contributor to abnormal synergies in hemiparetic subjects," Muscle Nerve, 27: 211-221, 2003.
[70] S. Micera, J. Carpaneto, F. Posteraro, L. Cenciotti, M. Popovic and P. Dario, "Characterization of upper arm synergies during reaching tasks in able-bodied and hemiparetic subjects," Clin. Biomech., 20: 939-946, 2005.
[71] L. Dipietro, H. I. Krebs, S. E. Fasoli, B. T. Volpe, J. Stein, C. Bever and N. Hogan, "Changing motor synergies in chronic stroke," J. Neurophysiol., 98: 757-768, 2007.
[72] 龔品誠, "具量測腕部控制之上肢復健機器人," 國立成功大學機械工程學系碩士論文, 2004.
[73] H. A. Elmaraghy and B. Johns, "An investigation into the compliance of SCARA robots.1. analytical model," J. Dyn. Syst. Meas. Control-Trans. ASME, 110: 18-22, 1988.
[74] H. Asada and K. Youcef-Toumi, "Anysis and design of a direct-drive arm with a five-bar-link parallel drive mechanism," J. Dyn. Sys., Meas., Control, 106: 225-230, 1984.
[75] J. L. Patton, M. E. Stoykov, M. Kovic and F. A. Mussa-Ivaldi, "Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors," Exp. Brain Res., 168: 368-383, 2006.
[76] C. Kisner and L. A. Colby, "Stretching," in Therapeutic Exercise: Foundations and Techniques 5, F. A. Davis (Ed), Philadelphia, PA 19103, pp. 171-215, 2002.
[77] R. W. Bohannon and M. B. Smith, "Interrater reliability of a modified ashworth scale of muscle spasticity," Phys. Ther., 67: 206-207, 1987.
[78] D. E. Johnson. Applied Multivariate Methods for Data Analysis. Duxbury Press, Pacific Grove, C. A., 1998.
[79] K. Luttgens, H. Deutsch and N. Hamilton. Kinesiology :scientific basis of human motion, 8th ed. Brown & Benchmark, Dubuque, IA, 1992.
[80] M. H. Rabadi, M. Galgano, D. Lynch, M. Akerman, M. Lesser and B. T. Volpe, "A pilot study of activity-based therapy in the arm motor recovery post stroke: a randomized controlled trial," Clin. Rehabil., 22: 1071-1082, 2008.
[81] A. C. Lo, P. D. Guarino, L. G. Richards, J. K. Haselkorn, G. F. Wittenberg, D. G. Federman, R. J. Ringer, T. H. Wagner, H. I. Krebs, B. T. Volpe, C. T. Bever, D. M. Bravata, P. W. Duncan, B. H. Corn, A. D. Maffucci, S. E. Nadeau, S. S. Conroy, J. M. Powell, G. D. Huang and P. Peduzzi, "Robot-Assisted Therapy for Long-Term Upper-Limb Impairment after Stroke," New England Journal of Medicine, 362: 1772-1783, 2010.
[82] C. G. Burgar, P. S. Lum, A. M. E. Scremin, S. L. Garber, H. F. M. Van der Loos, D. Kenney and P. Shor, "Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial," J. Rehabil. Res. Dev., 48: 445-458, 2011.
[83] L. Q. Zhang, S. G. Chung, Z. Q. Bai, D. L. Xu, E. M. T. van Rey, M. W. Rogers, M. E. Johnson and E. J. Roth, "Intelligent stretching of ankle joints with contracture/spasticity," IEEE Trans. Neural Syst. Rehabil. Eng., 10: 149-157, 2002.
[84] C. Y. Yeh, J. J. J. Chen and K. H. Tsai, "Quantitative analysis of ankle hypertonia after prolonged stretch in subjects with stroke," J. Neurosci. Methods, 137: 305-314, 2004.
[85] C. Y. Yeh, K. H. Tsai and J. J. Chen, "Effects of prolonged muscle stretching with constant torque or constant angle on hypertonic calf muscles," Arch. Phys. Med. Rehabil., 86: 235-241, 2005.
[86] C. C. K. Lin, M. S. Ju, S. M. Chen and B. W. Pan, "A Specialized Robot for Ankle Rehabilitation and Evaluation," J. Med. Biol. Eng., 28: 79-86, 2008.
[87] C. Y. Yeh, J. J. J. Chen and K. H. Tsai, "Quantifying the effectiveness of the sustained muscle stretching treatments in stroke patients with ankle hypertonia," J. Electromyogr. Kinesiol., 17: 453-461, 2007.
[88] D. T. Starring, M. R. Gossman, G. G. Nicholson and J. Lemons, "Comparison of cyclic and sustained passive stretching using a mechanical device to increase resting length of hamstring muscles," Phys. Ther., 68: 314-320, 1988.
[89] D. C. Taylor, J. D. Dalton, A. V. Seaber and W. E. Garrett, "Viscoelastic properties of musvle-tendon units - the biomechanical effects of stretching," Am. J. Sports Med., 18: 300-309, 1990.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw