進階搜尋


 
系統識別號 U0026-1208201018160000
論文名稱(中文) 渠道高流量非接觸式量測及其準確度之研究
論文名稱(英文) Non-contact Measurements and Accuracy Analyses for High Stages Open Channel Discharge
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 朱木壽
研究生(英文) Mu-Shou Chu
電子信箱 braveju@mail.thl.ncku.edu.tw
學號 n8890106
學位類別 博士
語文別 中文
論文頁數 135頁
口試委員 指導教授-黃煌煇
共同指導教授-呂珍謀
口試委員-林呈
口試委員-賴泉基
口試委員-顏沛華
口試委員-苗君易
中文關鍵字 洪水  非接觸式  連續波微波雷達表面流速儀  準確度 
英文關鍵字 flood  non-contact  continuous wave microwave Doppler radar velocimeter  accuracy 
學科別分類
中文摘要 中文摘要
渠道流量傳統實測作業方式係以需浸沒於水流之接觸式儀器測得平均流速,配合其對應水位(深)資料依其斷面幾何形狀推得通水面積,將兩者積算而得之。惟颱洪期間於天然河川以人力或藉機具操作儀器執行此實測作業頗為費時費力,而風狂雨驟之惡劣天候及變量流況將大幅提高其困難度,況且人員及機具暴露其中具頗高風險,故高流量流況多無實測資料。此為採用傳統作業方式實務困難之處,故洪水歷程流量資料多係於年後以卅餘次實測流量所建立水位-流量率定曲線由水位紀錄間接轉換而得,高流量資料則採延伸外插方式推計之。
為能安全即時地獲取高流量流況之實測流量,近年來已陸續發展數種不需接觸水體即能測得水流表面流速之儀器,並逐漸應用於實務量測作業,其中,連續波微波雷達表面流速儀可架設於橋樑上,無需人員操作即可全自動量測水流表面流速,提供高流量短期距實測作業之可行方向。本文以連續波微波雷達表面流速儀搭配雷達波水位計等非接觸式儀器設計建構全自動量測系統,其所測得渠道高流量期間表面流速及水位之短期距資料,則由垂直剖面速度分布經驗公式轉換為平均流速並進而推得流量,同時亦可利用主輔水位站之水位資料以坡度-面積法推算流量。鑑於河川斷面之實際流量值無法確切得知,乃利用成功大學水工試驗所中平試驗場之高流量循環供水系統,以1.2m寬、40m長、底床坡度1/500之矩形水泥鋪面試驗渠道進行試驗,期藉重複率定而得之入流量為參考基準,探討非接觸式量測系統所測得高流量資料之準確性。
不同入流量之率定作業係以體積法及下射式閘門法重複測定之,以建立入流控制斷面(矩形薄壁堰)水位與流量間單一率定關係,嗣後各試次入流量即由此控制斷面水位依此率定關係推得對應之流量,並作為各試次之基準流量。另利用聲波都普勒流速儀檢視試驗渠道於不同斷面橫向流況分布狀況,以修正整流設施配置方式,俾確認流況分布可符合試驗需求且可釐定流況穩定之試驗渠段,依此即可決定試驗渠道完全發展段之區位及選定各類量測儀器之適當佈設斷面。俟試驗條件確立即以非接觸式量測系統進行試驗,試驗採用之表面流速儀於各試次以30°、45°及60°等三種俯角測得表面流速,並以0.85為流速比推算平均流速,經與通水面積相乘得其斷面流量,其各試次結果與基準流量比較之平均準確度分別為34.9%、14.4%及-0.6%,而由各試次渠道斷面平均流速與表面流速儀以上述三種俯角所測得表面流速,可得其間流速比關係分別為0.655、0.746及0.852,另各試次以坡度-面積法推算渠段流量之平均準確度則為2.1%,顯示經適當之佈置及參數(流速比、曼寧n值)選定,非接觸式量測法可快速、準確地測得高流量條件之渠道流量。
此外,曾文溪新中水位流量站增設之非接觸式量測系統,係採用與試驗同類型連續波微波雷達表面流速儀為主體所建構之河川現地測站,除了採用表面流速法推計流量外,另配置主輔水位站測得上下游水位,藉坡度-面積法推算流量以資比較。本文整理此系統設置期間測得之三場颱洪資料,顯示其可全天候地測得洪水歷程短期距之水位及表面流速變化情形,由分析資料則可呈現出洪水期間之遲滯效應,此為傳統實測作業不易獲取之資訊。於假設底床不變動條件下,利用表面流速法及坡度-面積法推得洪水歷程短期距(設定為10分鐘)之即時流量,經選取與河川局同一時段實測資料比較,其間雖有4%至17%不等之差異度,然相較此傳統作業於各場颱風以5名人力耗時近1小時僅可測得一筆流量資料,顯示非接觸式量測系統確有實務應用之能力與價值。再者,將此非接觸式量測系統即時測得之洪水歷程流量資料,與河川局於年終方建立水位-流量率定曲線以水位紀錄推算之流量比較,顯示率定曲線於無實測數據而採延伸外插之高流量資料低估了14%至32%,因此,建議未來可將非接觸式量測系統與分析方法測得之洪水歷程高流量資料,作為率定曲線繪製與修正檢討之參考依據。
英文摘要 The mechanical current meters placed into the water flow by human operators have been used as the basic method for streamflow measurement and virtually unchanged for a long time in Taiwan. These direct measurements are made at regular intervals across the river with mechanical meters from bridges, cableways, or boats. However, under some conditions, direct measurement of discharge by current meter is unreliable, unsafe, or even impossible. These situations include floods where high velocities flow conditions or debris are dangerous to personnel and instruments, and rapidly changing unsteady flows. In high stages situations when direct measurements are not easily applied, the discharge is determined indirectly by rating curve extrapolation. To obtain the surface velocity distribution by non-contact techniques is currently in an effort to solve some of these problems, such as continuous wave microwave Doppler radar system have been developed and applied to obtain stage and transverse surface velocity distribution information at flood stage without human operators and putting any instruments into the water.
The purpose of this study is to utilize a series of experiments in a rectangle, concrete channel (40m long, 1.2m wide, and bottom slope is 1/500) for non-contact measurement system under the high discharge flow condition which had been calibrated, and to compare the capacities of different methods which include contact and non-contact instruments. The discharge can be obtained by the relation that had been established between surface velocity, the parameters of bottom roughness length ks, and water surface slope, etc. The results of experiments indicate that the non-contact instrument could catch velocity and water level rapidly. When the surface velocities in experiments of different inflow discharge were obtained by the continuous wave microwave radar velocimeter been established in 30°, 45° and 60° of the depression angle. Then they were also used to estimate the mean velocity in the cross section of measurement site by using a simple correction factor of 0.85, its individual discharge measurement average accuracy related to the above mentioned depress angle is 34.9%, 14.4% and -0.6%. When the mean velocity was evaluated by inflow discharge over cross section area, the ratios of mean velocity with surface velocity of three established depression angle are 0.655, 0.746 and 0.852. In addition, when the discharge is estimated by slope-area method from the above experiments, the average accuracy can be within 2.1%. Therefore, this proposed non-contact measurement system can obtain discharge of high stage open channel flow efficiently, accurately when the ratio of mean velocity with surface velocity and Manning’s roughness coefficient are decided appropriately.
In addition, the non-contact measurement gauging station is established in Zengwen River, via making continuous discharge estimates by microwave radar water level meter and continuous wave microwave radar velocimeters. The estimated models of discharge include slope-area method and surface velocity method under the condition of stable river bed in flood period. The latter is based on power law velocity profile formula to establish the relation between surface velocity and mean velocity. The continuous long-term flood discharge data during three typhoons had generated from the estimated models on the studied site, then they are compared with the direct measurement data by current meters and the derived data been converted from stage by stage/discharge rating curve which was established at the beginning of next year. From these comparisons, they show that the estimated results by the present methods have a good agreement with the field investigation which has difference from 4% to 17%, and the peak flow by the extrapolating data converted from rating curve for flood process is 14% to 32% lower than the result obtained from non-contact system measurement. Therefore compared to the traditional measurement, the real-time non-contact methods proposed in this study are more safely, acceptable and feasible in the application for the period of flood discharge.
論文目次 中文摘要 I
英文摘要 III
誌 謝 V
目 錄 VII
表 目 錄 IX
圖 目 錄 X
照片目錄 XIII
符號說明 XIV
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-3 論文組織架構 11
第二章 渠道流量測定方法及基本原理 14
2-1 流速面積法 14
2-2 控制斷面法 23
2-3 率定曲線之建立與應用 24
2-4 微波雷達表面流速量測原理 29
第三章 流量分析方法建立 37
3-1 坡度-面積法 37
3-2 表面流速法 43
3-3 控制斷面法 53
3-3-1 矩形薄壁堰 53
3-3-2 下射式閘門法 56
第四章 試驗與結果分析 59
4-1 試驗場地及儀器設備 59
4-1-1 試驗場地 61
4-1-2 儀器設備 64
4-2 試驗入流量率定 70
4-3 試驗流況檢測 76
4-4 試驗結果分析 81
第五章 現場量測分析討論 89
5-1 測站環境背景 89
5-2 測站儀器配置 93
5-3 測站觀測資料說明 96
5-4 現地觀測資料分析結果 100
5-4-1 量測結果分析 100
5-4-2 參數決定之影響 105
第六章 結論與建議 109
6-1 結論 109
6-2 建議 111
參考文獻 112
附錄 流量量測不確定性分析方法 124
自 述 133
參考文獻 1. Alexandre, H., A. Kurger, W. F. Krajewski, A. Brandley, M. Muste, J. D. Creutin, and M. Wilson, (2008), Experimental system for real-time discharge estimation using an Image-Base Method, Journal of Hydrologic Engineering, Vol. 13, No. 2, 105-110.
2. Bass, F. G., I. M. Fuks, A. I. Kalmykov, I. E. Ostrovsky, and A. D. Rosenberg, (1968), Very high radiowave scattering by a disturbed sea surface, II: Scattering from an actual sea surface, IEEE Transaction on Antennas and Propagation, Vol. 16, No. 5, pp. 560-568.
3. Bjerklie, D. M., S. L. Dingman, C. J. Vorosmarty, C. H. Bolster, and R. G. Congalton, (2003), Evaluating the potential for measuring river discharge from space, Journal of Hydrology, Vol. 278, pp. 17-38.
4. Bjerklie, D. M., D. Moller, L. C. Smith, and S. L. Dingman, (2005), Estimating discharge in river using remotely sensed hydraulic information, Journal of Hydrology, Vol. 309, pp. 191-209.
5. Bos, M. G., (1978), Discharge measurement structures(second edition), Working Group on Small Hydraulic Structures, International Institute for Land Reclamation and Improvement/ILRI, Wageningen , Netherlands.
6. Cardoso, A. H., W. H. Graf, and G. Gust, (1989), Uniform flow in a smooth open channel,” J. Hydraulic Research, Vol. 27, No. 5, pp. 603-616.
7. Chanson, H., (2004), The hydraulics of open channel flow: an introduction (second edition), Elsevier Butterworth-Heinemann.
8. Chen, C. L., (1989), Power law of flow resistance in open channels: Manning’s formula revisited, Proc. Int. Conf. on Channel Flow and Catchment Runoff: Centennial of Manning’s Formula and Kuichling’s Rational Formula, ASCE, pp.817-848.
9. Chen, C. L., (1991), Unified theory on Power law for Flow resistance, Journal of Hydraulic. Engineering, Vol. 117, No. 3, pp. 371-389.
10. Chen, C. L., (1992), Momentum and energy coefficient based on power-law velocity profile, Journal of Hydraulic. Engineering, Vol. 118, No.11, pp. 1571-1583.
11. Cheng, R. T., J. W. Gartner, R. R. Mason, J. E. Costa, W. J. Plant, K. R. Spicer, F. P. Haeni, N. B. Melcher, W. C. Keller, and K. Hayes, (2004), Evaluating a radar-based, non-contact streamflow measurement system in the San Joaquin River at Vernalis, California, U. S. G. S. Open File Report, 2004-1015.
12. Chiu, C. L., (1987), Entropy and 2-D velocity distribution in open channel, Journal of Hydraulic Engineering, Vol. 114, No. 7, pp. 738-755.
13. Chiu, C.L., and C. A. A. Said, (1995), Maximum and mean velocities and entropy in open-channel flow, Journal of Hydraulic Engineering, Vol. 121, No. 1, pp. 26-35.
14. Chiu, C. L., and N. C. Tung, (2002), Maximum velocity and regularities in open-channel flow, Journal of Hydraulic Engineering, Vol.128, No. 4, pp. 390-398.
15. Chiu, C. L., and Y. C. Chen, (2003), An efficient method of discharge estimation based on probability concept, Journal of Hydraulic Research, Vol. 41, No. 6, pp. 589–596.
16. Chow, V. T., (1959), Open-channel hydraulics, McGraw-Hill Book Co., Inc., New York.
17. Costa, J.E., K. R. Spicer, R. T. Cheng, F. P. Haeni, N. B. Melcher, E. M. Thurman, W. J. Plant, and W. C. Keller, (2000), Measuring stream discharge by non-contact methods: a proof-of-concept experiment, Geophysical Research Letters, Vol.27, No.4, pp.553-556.
18. Costa, J.E., R. T. Cheng, F. P. Haeni, N. Melcher, K. R. Spicer, E. Hayes, W. Plant, K. Hayes, C. Teague, and D. Barrick., (2006), Use of radars to monitor stream discharge by noncontact methods, Water Resources Research, Vol. 42, W07422.
19. Creutin, J. D., M. Muste, A. A. Bradley, S. C. Kim, and A. Kruger, (2003), River gauging using PIV techniques: a proof of concept experiment on the Iowa River, Journal of Hydrology, Vol. 277, pp. 182-194.
20. Estournel, C., P. Broche, P. Marsalex, J. L. Devenon, F. Auclair and R. Vehil, (2001), The Rhone river plume in unsteady condition: numerical and experimental results, Estuarine, Coastal and Shelf Science, Vol. 53, pp. 25-38.
21. Fukami, K., T. Yamaguchi, H. Iamura, and Y. Tashiro, (2008), Current status of river discharge observation using non-contact current meter for operational use in Japan, World Environmental and Water Resources Congress 2008 Alupua’a, pp. 1-10.
22. Gordon, R. L., (1989), Acoustic measurement of river discharge, Journal Hydraulic Engineering, Vol. 115, No. 7, pp. 925-936.
23. Henderson, F.M. (1966), Open channel flow, Macmillan, New York.
24. Herschy, R. W., (1985), Streamflow measurement, Elsevier Applied Science Publishers, London and New York.
25. Herschy, R. W., (2002), The uncertainty in a current meter measurement, Flow Measurement and Instrument, Vol. 13, pp. 281-284.
26. ISO/IEC Guide 98(1995), Guide to the expression of uncertainty in measurement (GUM).
27. ISO 748(1979 E), Liquid flow measurement in open channels-velocity area methods.
28. ISO 1070(1992), Liquid flow measurement in open channels-slope-area method.
29. ISO 1088(1985), Liquid flow measurement in open channels - velocity-area methods – Collection and processing of data for determination of errors in measurement.
30. ISO 1438/1(1980), Water flow measurement in open channels using weirs and Venturi flumes - Part 1: Thin-plate weirs.
31. ISO/TR 5168(1998), Measurement of fluid flow - Evaluation of uncertainties.
32. Jones, R. W., (2002), A method for comparing the performance of open channel velocity-area flow meters and critical depth flow meters, Flow Measurement and Instrumentation, Vol. 13, pp. 285–289.
33. Kim, D. G., (2007), Numerical analysis of free flow past a sluice gate, KSCE (Korean Society of Civil Engineers) Journal of Civil Engineering, Vol. 11, No. 2, pp. 127~132.
34. Kimura, Y., I. Satoshi, and M. Hiroaki, (2005), River flow information system with RF current sensors, 21st International Conference on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Session 10.8, The 85th AMS Annual Meeting(San Diego, CA).
35. Kirkup, L. and R. B. Frenkel, (2006), An introduction to uncertainty in measurement, Cambridge University Press, New York, U.S.A..
36. Kirkgöz, M. S., (1989), Turbulent velocity profiles for smooth and rough open channel flow, Journal of Hydraulic Engineering, Vol.115, No.11, pp.1543-1561.
37. Kirkgöz, M. S., and M. Ardichoğlu, (1997), Velocity profiles of developing and developed open channel flow, Journal of Hydraulic Engineering, Vol. 123, No. 12, pp.1099-1105.
38. Kouwen, N., (1988), Field estimation of the biomechanical properties of grass, Journal of Hydraulic Research, Vol. 26, No. 5, pp. 559-568.
39. Lee, M. C., C. J. Lai, J. M. Leu, W. J. Plant, W. C. Keller, and K. Hayes, (2002a), Non-contact flood discharge measurements using an X-band Pulse Radar (I) Theory, Flow Measurement and Instrument, Vol. 13, pp. 265-270.
40. Lee, M.C., J. M. Leu, C. J. Lai, W. J. Plant, W. C. Keller, and K. Hayes, (2002b), Non-contact flood discharge measurements using an X-band Pulse Radar (II) Improvements and Applications, Flow Measurement and Instrument, Vol. 13, pp. 271-276.
41. Lin, C.H., J. F. Yen, and C. T. Tsai, (2002), Influence of sluice gate contraction coefficient on distinguishing condition, Journal of Irrigation and Drainage Engineering, ASCE, Vol. 128, No. 4, pp. 249-252.
42. Merwade, V., F. Olivera, M. Arabi, and S. Edleman, (2008), Uncertainty in flood inundation mapping: current issues and future directions, Journal of Hydrologic Engineering, Vol. 13, No. 7, pp. 608-620.
43. Muste, M, D. Kim, and J. A. González-Castro, (2010), Near-transducer errors in ADCP measurements: experimental findings, Journal of Hydraulic Engineering, Vol. 136, No. 5, pp.275-289.
44. Neal, J, G. Schumann, P. Bates, W. Buytaert, P. Matgen, and F. Pappenberger, (2009), A data assimilation approach to discharge estimation from space, Hydrological Processes, Vol. 23, pp. 3,641-3,649.
45. Pelletier, P.M., (1988), Uncertainties in the single determination of river discharge: a literature review, Canadian Journal of Civil Engineering, Vol. 15, pp. 834-850.
46. Plant, W. J. and W. C. Keller, (1990a), Cross sections and modulation transfer functions at L and Ku bands measured during the tower ocean wave and radar dependence experiment, Journal of Geophysical. Research, Vol. 95, No. C9, pp. 16,277-16,289.
47. Plant, W. J. and W. C. Keller, (1990b), Evidence of Bragg scattering in microwave Doppler spectra of sea return, Journal of Geophysical. Research, Vol. 95, No. C9, pp. 16,299-16,310.
48. Plant, W. J., (1997), A model for microwave Doppler sea return at high incidence angles: Bragg scattering from bound tilted waves, Journal of Geophysical. Research, Vol. 102, C9, pp. 21,131-21,146.
49. Plant, W. J., W. C. Keller, K. Hayes, and K. Spicer, (2005), Streamflow properties from time series of surface velocity and stage, Journal of Hydraulic Engineering, Vol. 131, No. 8, pp.657–664.
50. Plant, W. J., W. C. Keller, and K. Hayes, (2005), Measurement of river surface currents with coherent microwave systems, IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 6, pp.1,242-1,257.
51. Polatel, C., (2006), Large-scale roughness effect on free-surface and bulk flow characteristics in open-channel flows, Ph. D. thesis, Civil and Environmental Engineering, University of Iowa, U.S.A.
52. Rantz, S. E., and others, (1982a), Measurement and computation of streamflow, Vol. 1. Measurement of stage and discharge, U. S. Geological Survey Water Supply Paper 2175, U.S. Geological Survey.
53. Rantz, S.E., and others, (1982b), Measurement and computation of streamflow, Vol. 2. Computation of discharge, U. S. Geological Survey Water Supply Paper 2175, U.S. Geological Survey.
54. Ruff, J. F., (2008), Flow measurement: history, encyclopedia of water science, Second Edition, 1: 1, pp. 388-393, Informa Ltd., London, UK.
55. Sauer, V. B., and R. W. Meyer, (1992), Determination of error individual discharge measurements, U. S. Geological Survey Open-File Report 92-144, U.S. Geological Survey.
56. Schmidt, A. R., (2002), Analysis of stage-discharge relations for open-channel and their associated uncertainties, Ph. D. thesis, Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, U.S.A..
57. Simpson, M. R. and R. N. Oltmann, (1993), Discharge-measurement system using an acoustic Doppler current profile with applications to large rivers and estuaries, U. S. Geological Survey Water Supply Paper 2395, U.S. Geological Survey.
58. Spicer, K. R., J. E. Costa, and G. Placzek, (1997), Measuring flood discharge in unstable stream channels using ground-penetrating radar, Geology, Vol. 25, pp. 423-426.
59. Steffler, P. M., N. Rajaratnam, and A. W. Peterson, (1985), LDA measurements in open channels, Journal of Hydraulic Engineering, Vol. 111, No. 1, pp. 119-130.
60. Stern, F., M. Muste, M. L. Beninati, and W. E. Eichinger, (1999), Summary of experimental uncertainty assessment methodology with example, Iowa Institute of Hydraulic Research Technical Report No. 406.
61. Swamee ,P. K., (1992), Sluice-gate discharge equations, Journal of Irrigation and Drainage Engineering, ASCE, Vol.118, No 1, pp. 56-60.
62. Wang, X. K., Z. Y. Wang, M. Z. Yu, and D. Li, (2001), Velocity profile of sediment suspensions and comparison of log-law and wake-law, Journal of Hydraulic Research, Vol. 39, No. 3, pp. 211-217.
63. Whalleyl, N., R. S. Iredale and A. F. Clarel, (2001), Reliability and uncertainty in flow measurement techniques - some current thinking, Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, Vol. 26, No. 10-12, pp. 743-749.
64. Wright, J. W., and W. C. Keller, (1971), Doppler spectra in microwave scattering from wind waves, Physics of Fluid, Vol. 14, pp. 466-473.
65. Wright, J. W., (1966), Backscattering from capillary waves with application to sea clutter, IEEE Transaction on Antennas and Propagation, Vol. 14, No. 6, pp. 749-754.
66. Xia R., (1997), Relation between mean and maximum velocities in a natural river, Journal of Hydraulic Engineering, Vol. 123, No. 8, pp. 720-723.
67. Xu, J. P. and L. D. Wright, (1995), Tests of bed roughness models using field data from the Middle Atlantic Bight, Continental Shelf Research, Vol. 15, No, 11/12, pp. 1,409-1,434.
68. Xu, K., J. Zhang, M. Watanabe, and C. Sun, (2004), Estimating river discharge from very high-resolution satellite data: a case study in Yangtze River, China, Hydrological processes, Vol. 18, pp. 1927-1939.
69. Yamaguchi, T. and K. Niizato, (1994), Flood Discharge Observation System using Radio Current meter, Proceedings of Japan Society of Civil Engineers, No. 497, pp. 41-50(in Japanese).
70. Yen, B. C., (1991), “Hydraulic resistance in open channels” in Channel Flow Resistance: Centennial of Manning’s Formula, B. C. Yen, ed., Water Resource Publications, Highlands Ranch, Colo., pp. 1–135.
71. Yen, B.C., (2002), Open channel flow resistance, Journal of Hydraulic Engineering, Vol. 128, No. 1, pp. 20-39.
72. Yen, B.C., S. T. Cheng, and C. S. Melching, (1986), First-order reliability analysis, in: stochastic and risk analysis in hydraulic engineering, Water Resources Publications, Littleton, CO, pp. 1-36.
73. Yorke, T. H. and K. A. Oberg, (2002), Measurement river velocity and discharge with acoustic Dopple profilers, Flow Measurement and Instrument, Vol. 13, pp. 191-195.
74. Zhang, J, K, Xu, M. Watanabe, Y. Yang, and X. Chen, (2004), Estimation of river discharge from nontrapezoidal open channel using QuickBird-2 satellite imagery, Hydrological Sciences, Vol. 49, No, 2, pp. 247-260.
75. 易任(1974),渠道水力學(上),國立編譯館。
76. 王如意、易任(1979),應用水文學,國立編譯館。
77. 台灣省水利局(1982),水文觀測實務。
78. 錢寧、萬兆惠(1991),泥沙運動力學,科學出版社,北京。
79. 台灣省水利處、中興大學(1995),台灣河川量觀測技術之開發與應用(一)。
80. 台灣省水利處、中興大學(1996),台灣河川量觀測技術之開發與應用(二)。
81. 台灣省水利處、中興大學(1997),台灣河川量觀測技術之開發與應用(三)。
82. 經濟部水資源局、中興大學(1998),高效率河川流量觀測技術之研發與應用。
83. 李明靜,賴泉基(2000),由水面流速分布推定河川斷面水深及流量之研究,中國土木水利工程學刊,第十二卷,第四期,第777 頁至783 頁。
84. 經濟部水資源局、財團法人成大水利及海洋研究發展文教基金會(2000),高效率流量示範站之建置運作(1/2)。
85. 經濟部水資源局、財團法人成大水利及海洋研究發展文教基金會(2001),高效率流量示範站之建置運作(2/2)。
86. 賴泉基、李明靜(2001),洪水期河川流量遙測方法研究(III),行政院國家科學委員會計畫研究成果報告(計畫編號:NSC 89-2211-E-006-169)。
87. 經濟部水利署水利規劃試驗所(2002),台灣地區河川型態調查研究總報告。
88. 徐偉碩(2003),ADCP活動式量測系統於河川流量觀測應用之研究,國立中興大學土木工程研究所碩士論文。
89. 李明靜(2003),河川表面流速與流量非接觸式量測方法之發展及應用,國立成功大學水利及海洋研究所博士論文。
90. 經濟部水利署(2003),曾文溪水系治理規劃報告。
91. 交通部公路總局、中興大學(2004),跨河橋樑訂定封橋水位。
92. 交通部公路總局、台灣大學(2004),河川橋梁沖刷並補強後之安全評估。
93. 經濟部水利署、中興工程顧問股份有限公司(2004),水文觀測評鑑制度推動及水文觀測系統維護計畫(1/3)。
94. 四國地方整備局河川部、四國水文観測檢討會(2004),水文観察の手引き(案) –低水流量観測編(第2版),日本。
95. 四國地方整備局河川部、四國水文観測檢討會(2004),水文観察の手引き(案) –高水流量観測編(第2版),日本。
96. 李明靜、呂珍謀、賴泉基、詹勳全(2005),河川流量遙測技術之建立與應用,台灣水利季刊,第54卷,第3期,第59-67頁。
97. 財團法人全國認證基金會(2005),測試結果量測不確定度評估指引。
98. 經濟部水利署、財團法人成大研究發展基金會(2005),水文觀測站新建暨改善流量觀測工程規劃。
99. 經濟部水利署、財團法人成大研究發展基金會(2005),水文觀測技術團建置先期研究與示範(3/3)。
100. 經濟部水利署第六河川局(2006),曾文溪治理、區域排水及都市計畫之整體排洪關係。
101. 經濟部水利署、財團法人成大研究發展基金會(2006),中央管河川流量量測規劃改善計畫及工法之擬定(1/2)。
102. 經濟部水利署、財團法人成大研究發展基金會(2007),中央管河川流量量測規劃改善計畫及工法之擬定(2/2)。
103. 吳瑞濱(2008),水位流量率定解析方法及其不確定性,國立交通大學土木工程學系博士論文。
104. 經濟部水利署、巨廷工程顧問股份有限公司(2008),中央管河川自動化流量站設置與量測工法改善。
105. 許少華(2009),24GHz連續調頻單脈衝技術之雷達前端電路設計與整合,國立交通大學電信工程學系碩士論文。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw