進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1207201916473300
論文名稱(中文) 廢鋰電池有價金屬資源化技術
論文名稱(英文) Recovering of Valuable Metals from Waste Lithium -ion Batteries
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 邱凱倫
研究生(英文) Kai-Lun Chiu
學號 N48041149
學位類別 博士
語文別 中文
論文頁數 116頁
口試委員 指導教授-申永輝
口試委員-駱尚廉
口試委員-陳道星
口試委員-趙平宜
口試委員-王立邦
中文關鍵字 廢鋰電池回收  有價金屬再生  溶媒萃取  離子交換  資源再生技術     
英文關鍵字 Recycling of Waste Lithium-Ion Batteries (LIB)  valuable metal recycling  ion exchange  solvent extraction  resources recycling technology 
學科別分類
中文摘要 鋰電池因電動車熱銷而逐漸短缺,近年需求量均呈正面成長,而鋰電池中含有鈷、銅、鎳、鋰等有價金屬,台灣及國際上尚無針對廢鋰電池完整的回收技術,若能開發適當回收技術加以再生,一方面可以降低廢棄鋰電池對環境所造成的負擔,另一方面也可以掌握關鍵性的資源。由於自然界中的鈷、銅、鋰等金屬蘊藏量少,且近年價格高昂,價格波動幅度極大,因此就資源有限的考量,有必要予以進行再生處理。此外,二次鋰離子電池使用的物質接觸到空氣或水分時,會造成自然環境的污染破壞及個人安全威脅,有機電解液也對於環境有一定的危害,基於環境影響與安全問題,廢棄鋰電池也必須加以系統化的回收。
本研究將研發一套有效回收廢鋰電池之技術流程,以特殊放電技術、物理篩選分離、浸漬溶出、選擇性化學沉澱、離子交換、溶媒萃取等技術從廢鋰電池中回收鋰、鈷、鎳、錳等有價金屬。並比較利用PC88A+D2EHPA協同萃取的溶媒萃取技術及M4195、IRC748等樹脂的離子交換技術,以這兩種金屬純化分離技術,來比較分離鈷及鎳的效果,最後將萃取出之有價金屬製成高純度之金屬產品,供鋰電池製造商及工業界回流使用,以達資源再生利用及永續循環之目的。
英文摘要 Lithium-Ion Batteries (LIB) for Electric Vehicles (EV) and electronics are more and more important due to it is in great demand and its demand growing up very fast in recent years. Lithium-ion batteries (LIB) containing cobalt, manganese, nickel, lithium and other valuable metals. However, there is no waste recycling technology related to waste lithium-ion batteries in Taiwan. If we can develop the appropriate technology for recycling and regeneration, one of the benefits is that we can reduce the burden of waste on the environment caused by waste lithium batteries, on the other hand, we can control key resources. Based on the environmental impact and safety issues, waste lithium ion batteries must be systematic recovery.
This study developed an effective technical processes of recycling waste Lithium-ion batteries (LIB):
1. Process of safe pretreatment and classification on LIBs includes density separation, discharging technology, vacuum roasting, shredding, sieving, magnetic separation to separate the cathode and anode material, the copper and iron case.
2. To extract and refine the valuable metals of cathode materials by hydrometallurgy process, including leaching, ion exchange, and solvent extraction technology to recycle lithium, cobalt, nickel, manganese and other valuable metals from waste EV lithium batteries. In addition, development technologies such as electrolytic refining to extract the metal to make high-purity of valuable metal products to provided lithium battery manufacturers and the industry to use, to reach sustainable resources circulation.
論文目次 摘要 II
Extended Abstract III
總目錄 XIV
圖目錄 XVIII
表目錄 XXI
第一章 前言 1
1.1 研究背景: 1
1.2 研究動機與目的: 2
1.3 國外鋰電池回收產業之情況: 6
a. 韓國的Kobar Limited 6
b. 日本JX日鑛日石金屬公司 6
c. 比利時礦業集團Umicore 6
d. 美國 Toxco Inc. 鋰電池回收 7
e. 德國Rockwood lithium公司 7
f. 法國、新加玻Recupyl公司 7
g. Inmetco公司回收鋰電池 8
h. ABattRelife 歐洲研究團隊 8
第二章 理論基礎與文獻探討 10
2.1 萃取和反萃取概述 10
2.2 萃取之論述 12
2.2.1 稀釋劑、添加劑及萃取劑 12
2.2.2 萃取過程(萃取體系) 15
2.2.3 影響萃取平衡的因素 15
2.3 反萃取 16
2.4 離子交換之基礎理論 17
2.4.1. 離子交換樹脂之分類與特性 17
2.4.2. 離子交換能力之分類 18
2.5鋰電池回收文獻探討 20
2.5.1 鋰電池前處理回收 20
2.5.2 化學沉澱及溶媒萃取 20
2.5.3 離子交換樹脂的選用、操作條件與流程 20
2.5.4 DOWEX4195 螯合樹脂 21
2.5.5 Amberlite IRC748 螯合樹脂 22
第三章 研究方法與實驗流程 24
3.1 研究方法與設計 24
3.2 廢鋰電池之物理分離回收技術 25
3.2.1 物理分離研究流程 25
3.2.2 物理分離回收之研究內容 26
3.2.3 物理分離回收技術研究內容 28
3.3廢鋰電池濕法回收萃取純化技術 30
3.3.1 純化回收技術流程 30
3.3.2濕法冶金技術回收有價金屬之研究內容 30
3.3.3溶媒萃取實驗 31
3.3.3.1 溶媒萃取劑選擇 31
3.3.3.2稀釋劑的選擇 32
3.3.3.3改質劑的選擇 32
第四章 結果與討論 35
4.1 廢鋰電池前處理分選研究 35
4.1.1 放電技術研究 36
4.1.2 放電參數實驗 37
4.1.3 破碎篩分 42
4.2 鋰三元電池正極材料特性分析 43
4.2.1 XRD粉末結晶相分析 43
4.2.2 ICP及XRF化學成分分析 43
4.2.3 SEM表面特性分析 44
4.2.4 EDS 表面特性分析 45
4.2.5 XPS元素化學狀態分析 48
4.2.6. 鋰三元材料初步特性分析結論 50
4.3 浸漬溶出研究 51
4.4 選擇性沉澱Mn之研究 53
4.4.1  pH值對錳之沉澱分離效率影響 54
4.4.2 S2O82-與Mn2+之莫耳比對沉澱效率的影響 55
4.5 金屬分離純化研究-溶媒萃取實驗 56
4.5.1 PC88A與 D2EHPA 協同萃取混合比例 56
4.5.2 協同萃取參數實驗- 平衡pH值 57
4.5.3 協同萃取參數實驗- 萃取劑之濃度 58
4.5.4 協同萃取參數實驗- 油水比(O/A ratio) 59
4.5.5 協同萃取參數實驗- 萃取時間 60
4.5.6 反萃取參數實驗-H2SO4濃度 61
4.5.7 反萃取參數實驗-油水比(O/A ratio) 62
4.5.8反萃取參數實驗-反應時間 (min) 63
4.6 選擇性化學沉澱- Ni2+、Li+分離實驗 64
4.6.1 選擇性沉澱分離Ni2+、Li+ - 平衡pH值參數 65
4.6.2 選擇性沉澱分離Ni2+、Li+ - dmgH2與Ni2+莫耳比參數 66
4.6.3 選擇性沉澱分離Ni2+、Li+ - 反應時間參數 67
4.7 金屬分離純化研究-離子交換實驗 68
4.7.1 pH值及不同萃取劑對Co、Ni吸附之影響 68
4.7.2 樹脂用量與吸附量之實驗 69
4.7.3 離子交換動力學實驗 70
4.7.4 離子交換分離Li+ 75
4.7.5 離子交換分離Co2+、Ni2+ 76
4.8 經濟效益與可行性評估分析 80
4.8.1 市場分析 80
4.8.2 擬建生產規模 80
4.8.3 產品價值分析 81
4.8.4 利潤預測分析 82
第五章 結果與討論 83
參考文獻 86
參考文獻 [1] Alexander Osterwalder ,Yves Pigneur, Business model generation : a handbook for visionaries, game changers, and challengers, Wiley, Hoboken, NJ, 2010.
[2] Gao, L. &; Winfield, Z.C., “Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles”, Energies, 5(3), 605-620, 2012.
[3] Kley, F., Lerch, C. ; Dallinger, D., “New business models for electric cars - A holistic approach”, Energy Policy, 39(6), 3392. 2011.
[4] Mike Omotoso,Global Alternative Fuel Light Vehicle Sales Forecast,J.D. Power & Associates. ,2010.
[5] Martino Tran, David Banister, Justin D. K. Bishop &; Malcolm D. McCulloch, “Realizing the electric-vehicle revolution”, Nature Climate Change 2(5), 328–333, 2012.
[6] Peter Wells and Paul Nieuwenhuis., 2011,"Transition failure:Understanding continuity in the automotive industry", Technological Forecasting and Social Change,79 ,1681-1692, 2012。
[7] Paulion, J. F., Busnardo, N. G. and Afonso, J. C., “Recovery of valuable elements from spent Li-batteries”, Journal of hazardous materials, 150(3):843-849, 2008.
[8] Yun, L. X., Guangyan and Xiaowu, Y., “Research on the recovery technology of spent lithium ion batteries”, Renewable Resources and Recycling Economy, 1(3):36-39 , 2008.
[9] C. Kantipuly , Skatragadda , " Chelating polymers and related supports for separation and preconcentration of trace metals " , Talanra , Vol.37 , No. 5 , pp . 491-5 17 , 1990 .
[10] Zacara Reddad , " Adsorption of Several Metal Ions onto a Low - CostBiosorbent: Kinetic and Equilibrium Studies Environ. Sci. echnol 36. pp. 2067-2073, 2002.
[11] Dorota Kooodyn App on of a new generation complexing agent in removal of heavy metal ions from aqueous solutions". Ind. Eng. chem. Res. 47, pp. 3192-3199, 2008.
[12] D.Feng, Treatment of acid mine water by use of heavy metal precipitation and ion exchange". Minerals Engineering, Vol. 13, No. 6, pp 623-642, 2000.
[13] L. Rosato, G.B. Harris and R.W. Stanley, "Separation of nickel from cobalt in sulphate medium by ion exchange". Hydrometallurgy 13, pp. 33-44 1984.
[14] Seham Nagib, "Recovery of Ni from a large excess of Al generated from spent hydrodesulfurization catalyst using picolylamine type chelating resin and complexane types of chemically modified chitosan", Hydrometallurgy 51 pp. 73-85, 1999.
[15] Amélie Janin, "Selective recovery of Cr and Cu in leachate from chromated copper arsenate treated wood using chelating and acidic ion exchange resins", Journal of Hazardous Materials 169, pp. 1099-1105, 2009.
[16] Yuewei zhu, "Toward separation of toxic metal (ID cations by c polymers: some noteworthy observations Reactive Polymers 13, pp 241-253, 1990.
[17] Amp K. Sengupta and Yuewei zhu, "Metals sorption by chelating polymers: a unique role of ionic strength", AIChE Journal, Vol. 38, No. 1, pp. 153-157, 1992.
[18] Dow Chemical U.S.A., "selective absorption of copper, nickel, cobalt and other transition metal ions from sulfuric acid solutions with the chelating ion exchange resin XFS 4195", Hydrometallurgy 12, pp. 387-400, 1984.
[19] Claudia v Diniz, "Effect of pH on the adsorption of selected heavy metal ions from concentrated chloride solutions by the chelating resin DowEx M-4195 separation Science and Technology 37(14), pp. 3169-3185, 2002.
[20] Claudia Diniz, "The use of the chelating resin Dowex M-4195 in the adsorption of selected heavy metal ions from manganese solutions", Hydrometallurgy 78, pp. 147-155, 2005.
[21] FD. Mendes, "Recovery of nickel and cobalt from acid leach pulp by ion exchange using chelating resin", Minerals Engineering 18, pp. 945-954, 2005.
[22] FD. Mendes, "Selective nickel and cobalt uptake from pressure sulfuric acid leach solutions resin sorption", Int. J. Miner. Process. 77, using column pp. 53-63, 2005.
[23] Li-Chun Lin, Jiunn-Kwei Li Removal (II) from aqueous solutions using batch and fixed-bed ion exchange processes Desalination 225, pp. 249-259, 2008.
[24] Zaimawati Zainol, "Ion-exchange equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with iminodiacetic acid chelating resin Amberlite IRC 748" Hydrometallurgy 99, pp. 175-180, 2009.
[25] P. Zhang et al., Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries, Hydrometallurgy 50. pp.61–75, 1998.
[26] Yu-Chuan Lin et al, A Novel Recovery Process of Metal Values from Spent Lithium-ion Secondary Batteries, Hydrometallurgy 99(3-4): pp.194-201, 2009.
[27] J. Li, G. Wang, and Z. Xu, Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries, Waste Manag, vol. 52, pp. 221-7, Jun 2016.
[28] D. L. Wood, J. D. Quass, J. Li, S. Ahmed, D. Ventola, and C. Daniel, Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP, Drying Technology, vol. 36, no. 2, pp. 234-244, 2017.
[29] He, L. P.; Sun, S. Y.; Song, X. F.; Yu, J. G. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries, Waste Manag. vol. 64, pp.171–181, 2017.
[30] Pant, D.; Dolker, T. Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries, Waste Manag, vol. 60, pp.689–695, 2017.
[31] Takacova, Z.; Havlik, T.; Kukurugya, F.; Orac, D. Cobalt and lithium recovery from active mass of spent Li-ion batteries: Theoretical and experimental approach. Hydrometallurgy, vol.163, pp.9-17, 2016.
[32] Zhang, X.; Xue, Q.; Li, L.; Fan, E.;Wu, F.; Chen, R. Sustainable Recycling and Regeneration of Cathode Scraps from Industrial Production of Lithium-Ion Batteries. ACS Sustain. Chem. Eng. vol.4, pp. 7041–7049, 2016.
[33] Diekmanna, J.; Hanisch, C.; Froböse, L.; Schälicke, G.; Loellhoeffel, T.; Fölster, A.-S.; Kwade, A. Ecological Recycling of Lithium-Ion Batteries from Electric Vehicles with Focus on Mechanical Processes.J. Electrochem. Soc. 164, A6184–A6191, 2017.
[34] Barik, S. P.; Prabaharan, G.; Kumar, B. An innovative approach to recover the metal values from spent lithium-ion batteries. Waste Manag, vol. 51, pp. 222–226, 2016.
[35] F. Pagnanelli, E. Moscardini, P. Altimari, T. A. Atia, and L. Toro, Leaching of electrodic powders from lithium ion batteries: Optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval. Elsevier, pp. 706-715, 2017.
[36] Chiu, K. L.; Chen, W. S. Recovery and Separation of Valuable Metals from Cathode Materials of Spent Lithium-Ion Batteries (LIBs) by Ion Exchange. Sci. Adv. Mater., 9, 2155–2160, 2017.
[37] Y. Pranolo, W. Zhang, C.Y. Cheng, Recovery of metals from spent lithium-ion battery leach solutions with a mixed solvent extractant system, Hydrometallurgy 102, pp.37–42, 2010.
[38] Liang Chen et al, Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy 108, pp. 80-86, 2011.
[39] B. Swain, J. Jeong, J.-C. Lee, G. H. Lee, and J. S. Sohn, J, Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries, Power Sources vol.167, pp.536–544, 2007.
[40] Garcia, E.M., et al., Electrodeposition of cobalt from spent Li-ion battery cathodes by the electrochemistry quartz crystal microbalance technique. Journal of Power Sources, 185(1), pp.549-553, 2008.
[41] Xu, J., et al., A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources, 177(2): pp.512-527, 2008.
[42] Whittingham, M.S., Lithium batteries and cathode materials. Chem. Rev, 104(10): pp.4271-4302, 2004.
[43] Shin, S.M., et al., Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy, 79(3-4): pp.172-181, 2005.
[44] Lee, C. K. and K.-I. Rhee, Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy, 68(1-3): pp.5-10, 2003
[45] C. Kantipuly, Skatragadda, ”Chelating polymers and related supports for separation and preconcentration of trace metals”, Talanra, Vol. 37, No. 5, pp. 491-517, 1990.
[46] Zacaria Reddad, ”Adsorption of Several Metal Ions onto a Low-Cost Biosorbent: Kinetic and Equilibrium Studies”, Environ. Sci. Technol 36. pp. 2067-2073, 2002.
[47] Dorota KoøodynÂska, ”Application of a new-generation complexing agent in removal of heavy metal ions from aqueous solutions”, Ind. Eng. Chem. Res. 47, pp. 3192-3199, 2008.
[48] Irving Langmu, “The constitution and fundamental properties of solids ang liquids. part I. solids., Constitution of Solids and Liquids, pp. 2221-2295, 1916.
[49] M. Jaroniec, “Adsorption on heterogeneous surfaces: the exponential equation for the overall adsorption isotherm, Surface Science 50, pp. 553, 1975.
[50] C. Kantipuly, Skatragadda, Chelating polymers and related supports for separation and preconcentration of trace metals, Talanra, Vol. 37, No. 5, pp. 491-517, 1990.
[51] Sadhan Pramanik, Pulak K. Dhara, “A chelating resin containing bis(2-benzimidazolylmethyl)amine: synthesis and metal-ion uptake properties suitable for analytical application, Talanta 63, pp. 485-490, 2004.
[52] Yu Liu, Ya-Juan Liu, “Review Biosorption isotherms, kinetics and thermodynamics, Separation and Purification Technology 61, pp. 229-242, 2008.
[53] M.H. Khani, H. Pahlavanzadeh, “Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae, Journal of Hazardous Materials 150, pp. 612–618, 2008.
[54] Nasr Z. Misak,Langmuir isotherm and its application in ion-exchange reactions, Reactive Polymers 21, pp. 53-64, 1993.
[55] B. Fan, X. Chen, T. Zhou, J. Zhang, and B. Xu, "A sustainable process for the recovery of valuable metals from spent lithium-ion batteries," Waste Manag Res, vol. 34, no. 5, pp. 474-81, May 2016.
[56] Meshram, B. Pandey, and T. Mankhand, Recovery of valuable metals from cathodic active material of spent lithium ion batteries: leaching and kinetic aspects. Elsevier, pp. 306-313 , 2015.
[57] X. Zeng, J. Li, and N. Singh, "Recycling of Spent Lithium-Ion Battery: A Critical Review," Critical Reviews in Environmental Science and Technology, vol. 44, no. 10, pp. 1129-1165, 2014.
[58] X. Chen, Y. Chen, T. Zhou, D. Liu, H. Hu, and S. Fan, Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Elsevier, pp. 349-356, 2015.
[59] M. Joulié, R. Laucournet, and E. Billy, Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. Elsevier, pp. 551-555 , 2014.
[60] L. Li, R. Chen, F. Sun, F. Wu, and J. Liu, Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process (no. 3-4). Elsevier, pp. 220-225 , 2011.
[61] L. Li, J. Ge, R. Chen, F. Wu, S. Chen, and X. Zhang, Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries (no. 12 ). Elsevier, pp. 2615-2621, 2010.
[62] L. Li, J. Ge, F. Wu, R. Chen, S. Chen, and B. Wu, Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant (no. 1-3 ). Elsevier , pp. 288-293, 2010
[63] L. Li et al., Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. Elsevier, pp. 21-27 , 2012.
[64] L. Chen, X. Tang, Y. Zhang, L. Li, Z. Zeng, and Y. Zhang, "Process for the recovery of cobalt oxalate from spent lithium-ion batteries," Hydrometallurgy, vol. 108, no. 1-2, pp. 80-86, 2011.
[65]X. Chen, B. Xu, T. Zhou, D. Liu, H. Hu, and S. Fan, "Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries," Separation and Purification Technology, vol. 144, pp. 197-205, 2015.
[66] 呂小三、雷立旭,一種廢舊鋰離子電池成份分離的方法,電池,第37卷,第1期,第79-80頁,2007。
[67] 王曉峰、孔祥華等,「鋰離子電池中貴重金屬的回收」,電池,第31卷,第1期,第14-15頁, 2001。
[68] 謝嘉容,以D2EHPA含浸樹脂萃取鐵離子之平衡及動力學研究,國立臺北科技大學化工所碩士論文, 2005。
[69] 黃樑傑,2011年國際電動車市場發展概況,車輛中心,2011
[70] 曾祐強、鄭凱文,「全球主要國家電動車示範推行推動現況」,財團法人車輛研究測試中心, 2011。
[71] 楊正瑀,「全球主要國家EV發展策略與推動措施」,財團法人資訊工業策進會,2011。
[72] 薛乃綺,林素琴,「我國商用電動車未來服務系統商機與模式探討」,財團法人金屬工業研究發展中心,高雄市,2011。
[73] 電動車產業政策, 行政院¸經濟部工業局&電動車推動辦公室, 2014 年。
[74] 電動化車輛滾動發展下,主要廠商佈局與發展策略 工研院 陳志洋,2014 年。
[75] 從新興市場汽車產業探索台灣車用零組件與汽車電子, 產品發展之潛力, 工研院石育賢, 2014 年。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw