進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1207201723201800
論文名稱(中文) 鋅錳電池有價金屬資源化研究
論文名稱(英文) Recovery of valuable metals from spent zinc manganese batteries
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 廖晉廷
研究生(英文) Chin-Ting Liao
學號 N46041274
學位類別 碩士
語文別 中文
論文頁數 100頁
口試委員 指導教授-陳偉聖
口試委員-向性一
口試委員-王立邦
口試委員-吳俊毅
中文關鍵字 濕法冶金  鋅錳電池回收  電極粉末  還原酸浸漬  溶劑萃取 
英文關鍵字 hydrometallurgy  Zn-Mn batteries recovery  electrode powder  reductive leaching  solvent extraction 
學科別分類
中文摘要 鋅錳電池是生活中最常見之電池,每年有穩定使用及回收量,雖然回收政策已實行多年,但國內仍缺乏將其資源化之關鍵技術。本研究以濕法冶金方式回收鋅錳電池中電極粉末,將粉末中具有價值之鋅與錳提煉為金屬氧化物,重新回到工業生產端上。研究內容以浸漬及純化分離金屬主軸。以硫酸直接浸漬時,各項浸漬參數調整對錳浸漬率提升效果有限。添加維生素C後的還原酸浸漬能大幅增加錳浸漬率,並且能在室溫且短時間、低酸度情況下完成,也間接抑制鐵的溶出。還原酸浸漬能達到錳浸漬率96%、鋅98%、鐵18%。鋅及錳之還原酸浸漬為固膜擴散控制,可作為未來浸漬強化措施之參考。純化分離金屬採用溶劑萃取法,採用皂化率為85%之Na-D2EHPA,O/A=1,平衡水相pH=3.5時,鋅萃取率達96.5%、錳4.8%,鐵80%,鋅錳之分離係數(βZn/Mn)達到531。Na-D2EHPA易於反萃鋅,反萃O/A=10,鋅反萃率仍達86%,濃縮富集效果良好,鐵則留於有機相中不會被反萃出。化學沉澱法從萃餘液中的錳及反萃液中的鋅沉澱分離,在合適的溫度下鍛燒後,所製出產品二氧化錳及氧化鋅,純度約為98%,整體鋅與錳回收率分別為94%及91%。此鋅錳電池資源化技術之開發可有效減少廢棄物汙染及促進金屬資源循環再利用。
英文摘要 In this study, the electrode powder of Zn-Mn batteries were recovered by hydrometallurgical method. Via reductive leaching and solvent exaction, Zn and Mn will be exacted. H2SO4 can totally dissolve Zn, but leaching efficiency of Mn is only 60% because of the existence of Mn (IV). Adding ascorbic acid can rise the leaching efficiency significantly. The optimal reductive leaching condition were determined as 0.5 mol/L of H2SO4, 20 ml/g, 25˚C, ascorbic acid dosage 10g/L for 2hours. Under these conditions, leaching rates were 98% for Zn and 96% for Mn and 18% for Fe. In addition, reductive leaching of Mn and Zn is diffusion controlled process and the activation energy of two metals are lower than 3kJ/mol.
After leaching process, metals were recovered from liquor via solvent extraction. Using saponification rate of 85% Na-D2EHPA was significantly better than D2EHPA. The extraction rates were 96.5% for Zn and 4.8% for Mn and 80% for Fe. Na-D2EHPA is easy to stripping Zn. Even in stripping O/A=10, the stripping rate is still up to 86%, Fe is left in the organic phase will not be stripping.
Mn in extraction raffinate and Zn in stripping solution were precipitated by NaOH. Then, the hydroxides converted respectively to MnO2 and ZnO by calcination. The percent purity of the products are about 98%. The overall recovery of Mn is 91% and Zn is 94%.
論文目次 摘要 I
Abstract II
誌謝 IX
目錄 X
圖目錄 XII
表目錄 XV
第一章 緒論 1
1-1前言 1
1-2研究目的 2
第二章 文獻回顧與理論基礎 3
2-1鋅錳電池基本特性 3
2-2鋅與錳金屬性質 6
2-3冶金技術概述 11
2-4實驗反應機制 15
2-4-1浸漬動力學 15
2-4-2浸漬熱力學 18
2-4-3化學沉澱分離 21
2-4-4溶劑萃取 22
2-5鋅錳電池資源化技術 27
2-5-1 鋅錳電池回收現況 27
2-5-2鋅錳電池資源化相關研究 29
第三章 實驗流程與方法 34
3-1 實驗藥品 34
3-2分析儀器 35
3-3實驗流程 37
第四章 結果與討論 42
4-1原料特性分析 42
4-2浸漬結果 45
4-2-1直接酸浸漬實驗 45
4-2-2還原酸浸漬實驗 50
4-2-3還原酸浸漬動力學 55
4-3分離純化實驗結果 63
4-3-1化學沉澱分離實驗 63
4-3-2溶劑萃取實驗 65
4-3-3皂化萃取實驗 77
4-4資源化產品 89
4-4-1金屬化合物析出 89
4-4-2產品特性分析 91
第五章 結論 94
參考文獻 95
參考文獻 [1] 楊秀玲,台灣地區廢乾電池管理評析與績效提升之研究,國立台北科技大學環境管理研究所碩士論文 (2012)
[2] 行政院環保署,廢照明光源及廢乾電池回收處理體系調查分析暨執行成效評估專案工作計畫 (2014)
[3] 行政院環境保護署資源回收管理基金管理會
[4] http://www.basel.int/
[5] Lihchyi Wen, Chun-hsu Lin, Soo-cheol Lee, “Review of recycling performance indicators: A study on collection rate in Taiwan”, Waste Management, 29(8), 2248–2256 (2009)
[6] 蕭瓊茹,資源回收再利用產品之環境衝擊評估-以燈管及乾電池為例,國立台北科技大學環境管理研究所碩士論文 (2012)
[7] M. F. Almeida, Xara, S.M., Delgado, J., Costa, A.C., “Characterization of spent AA household alkaline batteries,” Waste Management, 26(5), 466–476 (2006)
[8] T. R. Crompton, “Battery Reference Book Third edition Battery Reference Book” (2000).
[9] 牛志睿,辛寶平,龐康,廢舊鋅錳電池鋅錳元素的分析表徵“環境科學學報”(2015)
[10] D.W. McComsey “Zinc–carbon batteries. (Leclanche and zinc chloride cell systems). In: Linden, D. (Ed.),” Handbook of Batteries, Chapter. 8, 193–237 (2001)
[11] David R. Lide, CRC “Handbook of Chemistry and Physics,”90th Ed., CD-ROM Version, CRC Press/Taylor and Francis, Boca Raton, (2010)
[12] E. Peters, “Hydrometallurgical process innovation,” Hydrometallurgy, 29(1-3), 431-459 (1992)
[13] 周靈靈,軟錳礦醛基類有機物還原酸浸的實驗研究,貴州大學碩士論文 (2016)
[14] N.J Welham, “Activation of the carbothermic reduction of manganese ore,” International Journal of Mineral Processing, 67(1-4), 187-198 (2002)
[15] 朱賢徐,王志堅,劉平,兩礦焙燒法製備硫酸錳的工藝研究,湖南有色金屬 (2010)
[16] R.Z. Vračar, “Manganese leaching in the FeS2–MnO2–O2–H2O system at high temperature in an autoclave,” Hydrometallurgy, 55(1), 79–92 (2000)
[17] H. Vu, J. Jandová,K. Lisá,F. Vranka, “Leaching of manganese deep ocean nodules in
FeSO4–H2SO4–H2O solutions” Hydrometallurgy, 77(1-2), 147-153 (2005)
[18] M.S.Bafghi, A. Zakeri.,Z. Ghasemi, M. Adeli, “Reductive dissolution of manganese ore in sulfuric acid in the presenee of iron metal” Hydrometallurgy, 90(2-4), 207-212 (2007)
[19] ITIS智網,非鐵新興市場特輯,鋅金屬篇 (2016)
[20] V. Safari, G. Arzpeyma, F. Rashchi, N. Mostoufi, “A shrinking particle—shrinking core model for leaching of a zinc ore containing silica,” 93(1), 79-83 (2009)
[21] 劉洪萍,楊志鴻,濕法冶金:浸出技術,冶金工業出版社 (2010)
[22] N. Takeno, “Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases,” Geological Survey of Japan Open File Report No.419 (2005)
[23] 朱屯,李洲,溶劑萃取,化學工業出版社 (2008)
[24] J. Frenay, S Feron, “Domestic battery recycling in western Europe,” Proceedings of the Second International Symposium on Recycling of Metals and Engineered Materials, Volume. 2. The Minerals, Metals and Materials Society, 639–647 (1990)
[25] M.E. Schweers, J.C. Onuska, R.K. Hanewald, “A pyrometallurgical process for recycling cadmium containing batteries,” Proceedings of the HMC-South'92, New
Orleans, 333–335 (1992)
[26] T. Anulf, “SAB-NIFE Recycling concept for nickel–cadmium batteries: An industrialized and environmentally safe process,” Proceedings of the 6th International
Cadmium Conference. Cadmium Association, 161–163 (1990)
[27] R.H. Hanewald, W.A. Munson, D.L. Schweyer, “Processing EAF dusts and other nickel–chromium waste materials pyrometallurgically at INMETCO” Minerals and
Metallurgical Processing 169–173 (1992)
[28] G. Belardi, R. Lavecchia, F. Medici, L. Piga “Thermal treatment for recovery of manganese and zinc from zinc–carbon and alkaline spent batteries” Waste Management, 32(10), 1945–1951 (2012)
[29] M. Hasegawa, R. Ueyama, Y. Kashiwaya, T. Hirato, “Recovery of Zinc from used alkali-manganese dry cells,” Journal of Sustainable Metallurgy, 1(2), 144-150 (2015)
[30] M. Toita, T. Matsuoko, S. Kurozu, T. Ishimori, “Treatment and resources recovery of used dry batteries” Sumitomo Jukikai Giho 108, 6–10 (1988)
[31] A. Krebs, “Recycling of household batteries and heavy metal containing wastes” In: Gaballah, I., Hager, J., Solozabal, R. (Eds.), Proceedings of REWAS 99-Global Symposium on Recycling, Waste Treatment and Clean Technology, vol. 2. Minerals Metals and Materials Society, Warrendale, PA,1109–1116 (1999)
[32] C.C.B.M de Souza, J.A.S. Teno´rio, “Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing,” J. Power Sources, 136, 191–196 (2004)
[33] S. Ubaldini, P. Fornari, R. Massida, I. De Michelis, F. Ferella, F. Veglio, “Mn–Zn recovery from wastes by hydrometallurgical applications,” 11th International
Mineral Processing Symposium, Belek-Antalya, (2008)
[34] M.B.J.G. Freitas, V.C. Pegoretti, M.K. Pietre, “Recycling manganese from spent Zn-MnO2 primary batteries,” Journal of Power Sources, 164, 947–952 (2007)

[35] N. Vatistas, M. Bartolozzi, S. Arras, “The dismantling of the spent alkaline zinc maganese dioxide batteries and the recovery of the zinc from the anodic material,” J. Power Sources, 101, 182–187 (2001)
[36] T. Buzatu, G. Popescu, I. Birloaga, S. Săceanu, “Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes,” Waste Management, 33(3), 699–705 (2013)
[37] S.M. Shin, G. Senanayake, J. Sohn, J. Kang, D. Yang, T. Kim, “Separation of zinc from spent zinc-carbon batteries by selective leaching with sodium hydroxide,” Hydrometallurgy, 96(4), 349–353 (2009)
[38] 常偉,低品位軟錳礦還原浸出過程及其動力學研究,中南大學碩士論文(2014)
[39] M. Buzatu, S. Săceanu, M.I. Petrescu, G.V. Ghica, T. Buzatu, “Recovery of zinc and manganese from spent batteries by reductive leaching in acidic media,” Journal of Power Sources, 247, 612-617 (2014)
[40] L.R.S. Veloso, L.E.O.C. Rodrigues, D.A. Ferreira, F.S.Magalhães, M.B.Mansur, “Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries,” Journal of Power Sources, 152, 295-302 (2005)
[41] G. Senanayake, S-M. Shin, A. Senaputra, A. Senaputra, A. Winn, D. Pugaev, J. Avraamides, J-S. Sohn, D-J. Kim, “Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions,” Hydrometallurgy, 105(1-2), 36-41 (2010)
[42] J. Avraamides, G. Senanayake, R. Clegg, “Sulfur dioxide leaching of spent zinc–carbon-battery scrap,” Journal of Power Sources, 159, 1488-1493 (2006)
[43] B. Zeytuncu, “Dissolution of alkaline batteries in reductive acidic media,” Physicochemical Problems of Mineral Processing, 52(1), 437-450 (2016)
[44] M. H. Morcali, “Reductive atmospheric acid leaching of spent alkaline batteries in
H2SO4/Na2SO3 solutions,” International Journal of Minerals, Metallurgy, and Materials, 22(7), 674-681 (2015)
[45] G. Furlani, E. Moscardini, F. Pagnanelli, F. Ferella, F. Vegliò, L. Toro, “Recovery of manganese from zinc alkaline batteries by reductive acid leaching using carbohydrates as reductant,” Hydrometallurgy, 99(1-2), 115-118 (2009)
[46] F. Veglio, L. Toro, “Reductive leaching of a concentrate manganese-dioxide ore in acid-solution: stoichiometry and preliminary kinetic-analysis,” International Journal of Mineral Processing, 40(3-4), 257-272 (1994a)
[47] M. Trifoni, F. Veglio, G. Taglieri, L. Toro, “Acid leaching process by using glucose as reducing agent: a comparison among the efficiency of different kinds of manganiferous ores,” Minerals Engineering, 13, 217-221 (2000)

[48] E. Sayilgan, T. Kukrer, N.O. Yigit, G. Civelekoglu, M. Kitis, “Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants,” J Hazard Mater, 173, 137-143 (2010)
[49] F. Ferella, I. D. Michelis, F. Beolchini, V. Innocenzi, F. Vegliò, “Extraction of Zinc and Manganese from Alkaline and Zinc-Carbon Spent Batteries by Citric-Sulphuric Acid Solution,” International Journal of Chemical Engineering, (2010)
[50] I. D. Michelis, F. Ferella, E. Karakaya, F. Beolchini, F. Vegliò, “Recovery of zinc and manganese from alkaline and zinc–carbon spent batteries,” Journal of Power Sources, 172, 975-983 (2007)
[51] Y. Liu, R Xu, “Reductive dissolution of MnO2 and manganese oxides in soils by low-molecular-weight organic compounds,” Journal of Environmental Chemistry, 34(6), 1037-1042 (2015)
[52] K. Provazi, B.A. Campos, D.C.R. Espinosa, J.A.S. Tenório, “Metal separation from mixed types of batteries using selective precipitation and liquid–liquid extraction techniques,” Waste Management, 31(1), 59–64 (2011)
[53] M. Hove, R.P. Hille, A.E. Lewis, “Mechanisms of formatiom of iron precipitates from ferrous solutions at high and low pH,” Chem. Eng. Sci, 63(6), 1626–1635 (2008)
[54] J. Formanek, J. Jandova, J. Capek, “Iron removal from zinc liquors originating from hydrometallurgical processing of spent Zn/MnO2 batteries,” Hydrometallurgy, 138, 100-105 (2013)
[55] A.A. Baba, A.F. Adekola, R.B. Bale, “Development of a combined pyro- and hydro-metallurgical route to treat spent zinc–carbon batteries,” Journal of Hazardous Materials, 171(1-3), 838-844 (2009)
[56] M. Ulewicz, W. Walkowiak, “Selective removal of transition metal ions in transport through polymer inclusion membranes with organophosphorus acids,” Environment Protection Engineering, 31(3), 73-81 (2005)
[57] 史先菊,P204從高濃度含鋅溶液中萃取鋅的技術及機理研究,中南大學碩士論文 (2011)
[58] C.Y. Cheng, “Purification of synthetic laterite leach solution by solvent extraction using D2EHPA,” Hydrometallurgy, 56(3), 369–386 (2000)
[59] L. Falco, M.J. Quina, L.M. Gando-Ferreira, H. Thomas, G. Curutchet, “Solvent Extraction Studies for Separation of Zn(II) and Mn(II) from Spent Batteries Leach Solutions,” Separation Science and Technology, 49(3), 398-409 (2013)
[60] H.K. Haghighi, D. Moradkhani, M.M. Salarirad, “Separation of zinc from manganese, magnesium, calcium and cadmium using batch countercurrent extraction simulation followed by scrubbing and stripping,” Hydrometallurgy, 154, 9-16 (2015)

[61] R.K. Biswas, M.A. Habib, A.K. Karmakar, S. Tanzin, “Recovery of manganese and zinc from waste Zn–C cell powder: Mutual separation of Mn(II) and Zn(II) from leach liquor by solvent extraction technique,” Waste Management, 51, 149–156 (2016)
[62] Y.A. El-Nadi, J.A. Daoud, H.F. Aly, “Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries,” Journal of Hazardous Materials, 143(1-2), 328–334 (2007)
[63] R.S. Juang, Y.T Chang, “Effects of tri-n-butylphosphate and 2-ethyl-1 hexanol on the extraction of zinc with di(2-ethylhexyl)phosphoric acid,” Journal of Chemical Engineering of Japan, 25 (3), 339–342 (1992)
[64] J. Y. Lee, Y. Pranolo, W. Zhang, C.Y. Cheng, “The Recovery of Zinc and Manganese from Synthetic Spent‐Battery Leach Solutions by Solvent Extraction, Solvent Extraction and Ion Exchange,” 28(1), 73–84 (2010)
[65] E. Vahidi, F. Rashchi, D. Moradkhani, “Recovery of zinc from an industrial zinc
leach residue by solvent extraction,” Minerals Engineering, 22(2), 204–206 (2009)
[66] N. Devi, K.C. Nathsarma, V. Chakravortty, “Extraction and separation of Mn(II) and Zn(II) from sulphate solutions by sodium salts of Cyanex 272,” Hydrometallurgy 45(1-2), 169–179 (1997)
[67] K.C. Nathsarma, N. Devi, “Separation of Zn(II) and Mn(II) from sulphate solutions using sodium salts of D2EHPA, PC88A and Cyanex 272,” Hydrometallurgy, 84(3-4), 149–154 (2006)
[68] H. Vazarlis, P. Neou-Syngoyna, “A study of the leaching of copper and zinc from a greek copper concentrate. Liquid-liquid extraction for the separation of copper, zinc and iron from the leach solutions,” Hydrometallurgy, 12(3), 365-373 (1984)
[69] C.C.B.M. de Souza, D.C. Oliveira, J.A.S. Tenorio, “Characterisation of used alkaline batteries powder and analysis of zinc recovery by acid leaching,” Journal of Power Sources, 103(1), 120–126 (2001)
[70] B.A. Zeydabadi, D. Mowla, M.H. Shariat, J.F. Kalajahi, “Zinc recovery from blast furnace flue dust,” Hydrometallurgy,47(1), 113–125 (1997)
[71] R. Salmimies, Acidic dissolution of iron oxides and regeneration of a ceramic filter medium Acta Universitatis Lappeenrantaensis, (2012)
[72] B. Ebin, M. Petranikova, B.M. Steenari, C. Ekberg, “Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn–C battery waste,” Waste Management, 51, 157-167 (2016)
[73] Z. Khan, P. Kumar, K. Din, “Kinetics of the reduction of water-soluble colloidal MnO2 by ascorbic acid,” Journal of Colloid and Interface Science, 290(1), 184-189 (2005)
[74] 粟海鋒,崔嵬,孫英云,廢糖蜜-硫酸溶液中軟錳礦的浸出動力學,過程工程學報, 10(3), 542-547 (2010)
[75] R.K. Biswas, A.K. Karmakar, S.L. Kumar, M.N Hossain, “Recovery of manganese and zinc from waste Zn–C cell powder: Characterization and leaching,” Waste Management, 46, 529–535 (2015)
[76] 周瑋珊,溶媒萃取於銦資源化回收之應用,工業污染防治,第 116 期 (2010)
[77] 唐娟,萃取法從含鋅廢水中回收鋅的技術及機理研究,中南大學碩士論文 (2008)
[78] R. M. A. Lieth, “Preparation and Crystal Growth of Materials with Layered Structures,” Volume1, (1977)
[79] W. Zhang, C.Y. Cheng, “Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide,” Hydrometallurgy, 89(3-4), 137-159 (2007)
[80] W. Zhang, C.Y. Cheng, “Manganese metallurgy review. Part II: Manganese separation and recovery from solution,” Hydrometallurgy, 89(3-4), 160-177 (2007)
[81] 黃清連,吳裕慶, “鋅之冶煉法與資源再生”,礦冶雜誌,53(4),27-37(2010)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw