進階搜尋


下載電子全文  
系統識別號 U0026-1207201716450900
論文名稱(中文) 以Thermosynechococcus sp. CL-1應用於固碳、雌激素降解與類胡蘿蔔素產能分析
論文名稱(英文) Thermosynechococcus sp. CL-1 applied to CO2 fixation, estrogen degradation and carotenoids production analysis
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 張瑜玲
研究生(英文) Yu-Ling Chang
學號 P56044089
學位類別 碩士
語文別 英文
論文頁數 150頁
口試委員 指導教授-朱信
口試委員-張嘉修
口試委員-黃良銘
口試委員-周佩欣
中文關鍵字 Thermosynechococcus sp. CL-1  二氧化碳  雌激素  類胡蘿蔔素 
英文關鍵字 Thermosynechococcus sp. CL-1  CO2 fixation  Estrogens  Carotenoids 
學科別分類
中文摘要 近年工業化及都市化的緣故產生的大量污染物無法被傳統處理設備有效去除,故而排放至環境中影響環境生態也威脅人類健康。其中,環境荷爾蒙(內分泌干擾物質)會干擾正常荷爾蒙與受體結合,影響生物體內的平衡,進而影響繁殖發育甚至導致病變。雌激素為生活污水中最常見且無法避免的內分泌干擾物質,且在畜牧廢水中的濃度可以由ng/L至mg/L,特別是雌二醇(E2)是造成動物雌性化最主要的物質。
由於藻類的永續性及多功能性,近年來藻類的相關研究備受重視。在本研究中,選擇嗜熱藍綠菌Thermosynechococcus sp. CL-1 (TCL-1)應用於雌激素降解及固定煙道氣中二碳化碳,並探討在此污染環境中TCL-1的抗氧化反應,分別改變E2添加濃度(0、0.1、1.0、10.0 mg/L)、光照強度(50、100、200 μE m-2 s-1)及初始氮源濃度(1.2、5.8、29.0 mM),初始藻密度為0.2 g/L。
研究結果顯示,TCL-1可以很快地將E2氧化成雌酮(E1),E1也能在此系統中被降解。雌激素的降解途徑主要為生物降解,並非生物吸附或是生物吸收,推測可能降解機制為E2先累積於藻體內利用胞內酵素氧化成E1後,E1再釋出於體外降解;亦或是藉由胞外酵素直接將E2氧化成E1。光照強度為影響固碳效率及生質體產率最重要的因素。較高雌激素降解效率發生在低E2濃度、高光照強度及低氮源濃度。建議TCL-1培養於含雌激素的廢水時,將氮源濃度控制於1.2 mM以上,可提升類胡蘿蔔素產率。在本研究中在光照強度為200 μE m-2 s-1時有最高生質體產率、固碳效率、雌激素降解常數、玉米黃素及β胡蘿蔔素產率,分別為7.04 mg/L/h、11.41 mg/L/h 、0.0227 h-1、0.006 mg/L/h及 0.043 mg/L/。最高降解速率為0.1049 g estrogens/g biomass/h。
英文摘要 Urbanization and industrialization possess a severe threat to the environment as it overloads the ecosystem by disposing millions tons of wastewater. The specific category of pollutants comprises the compounds that may affect the normal hormonal function or possess endocrine-related functions, known as endocrine disrupting chemicals (EDCs). Estrogens seems as unavoidable and major EDCs in domestic wastewater. The concentrations of estrogens in farm wastewaters typically vary from a few nanograms/liter to several microgram/liter. Especially, 17β-estradiol (E2) is known to be the primary causative agent for feminization of aquatic wildlife.
Microalgae have recently gained huge attention worldwide because their sustainability and multifunctionality. Microalgae are highlighted due to their ability to capture carbon dioxide (CO2) and to convert it into oxygen and biomass. The molecular oxygen is used as an electron acceptor by bacteria to degrade organic matter. Thermosynechococcus sp. CL-1 (TCL-1) was chosen in this study in order to grow it in a high-temperature flue gas streams to investigate its performance of the CO2 fixation rate, estrogens degradation, and antioxidant response carotenoids production under various cultivation conditions.
The results showed that the E2 concentration sharply dropped and E2 was readily transformed into estrone (E1). E1 was degraded by TCL-1 in the algal treatment system. The removal of estrogens was achieved mainly through biodegradation. The possible mechanisms of E2 degradation by TCL-1 are illustrated as following; Pathway 1: Firstly, TCL-1 accumulated E2 into biomass. Secondly, TCL-1 intracellular enzymes transformed E2 into E1. Finally, E1 was released to the liquid phase for further degradation. Pathway 2: TCL-1 extracellular enzymes transformed E2 into E1. It can be found that light intensity was critical factor on biomass productivity and CO2 fixation rate in this system. The highest total estrogens (including E1 and E2) removal efficiency appeared at lower initial E2 concentration, higher light intensity, and lower initial nitrate concentration. The higher carotenoids productivity appeared at higher light intensity and nitrate concentration above 1.2 mM with estrogens wastewater. In present study, the highest biomass productivity, carbon fixation rate, total estrogens degradation kinetics, zeaxanthin productivity and β-carotene productivity were 7.04 mg/L/h, 11.41 mg/L/h, 0.0227 h-1, 0.006 mg/L/h and 0.043 mg/L/h, respectively, under 200 μE m-2 s-1 light intensity. The maximum specific degradation rate was 0.1049 g estrogens/g biomass/h when initial E2 concentration was 20.0 mg/L.
論文目次 摘要 I
Abstract II
致謝 IV
List of Figures E
List of Tables J
Nomenclature L
Chapter 1 Introduction 13
1-1 Motivation 13
1-2 Objectives 15
Chapter 2 Literature Review 17
2-1 Carbon dioxide 17
2-2 Endocrine disrupting chemicals (EDCs) 20
2-3 Estrogens 22
2-3-1 Physicochemical properties of estrogens 23
2-3-2 Sources of estrogens 24
2-3-3 Reduction of estrogens in wastewater treatment plant 27
2-4 Cyanobacteria 31
2-4-1 Properties 31
2-4-2 Cyanobacteria for carbon dioxide fixation 32
2-4-3 Cyanobacteria for wastewater treatment 33
2-5 Antioxidant response 37
2-5-1 Carotenoids 37
2-5-2 Malondialdehyde (MDA) 39
2-6 Photobioreactor (PBR) 41
2-7 Cultivation factors 43
2-7-1 Light 43
2-7-2 Temperature 44
2-7-3 Nutrients 45
2-7-4 pH 46
Chapter 3 Materials and method 49
3-1 Thermosynechococcus sp. CL-1 49
3-2 Chemical and Materials 50
3-2-1 Medium 50
3-2-2 Chemicals for estrogen analysis 52
3-2-3 Chemicals for carotenoids analysis 52
3-3 Experimental equipment 53
3-3-1 Cultivation equipment 53
3-3-2 Analysis equipment 54
3-3-3 Other equipment 56
3-4 Experimental Methods 58
3-4-1 Experimental process 58
3-4-2 Photosynthesis bioreactor 59
3-4-3 Conservation 60
3-4-4 Biomass source cultivation 60
3-4-5 Batch cultivation 62
3-5 Analytical method 63
3-5-1 Biomass concentration 63
3-5-2 Specific growth rate and biomass productivity 64
3-5-3 CO2 fixation rate analysis 65
3-5-4 Estrogens removal by TCL-1 66
3-5-5 Estrogens determination 67
3-5-6 Carotenoids extraction and analysis 69
3-5-7 MDA extraction and measurement 71
3-6 Kinetic model 72
3-6-1 The pseudo-first-order kinetics 72
3-6-2 Response surface methodology (RSM) 73
Chapter 4 Results and Discussion 74
4-1 Effect of initial 17β-estradiol concentration 74
4-1-1 Biomass productivity and CO2 fixation rate 74
4-1-2 Medium utilization 79
4-1-3 Estrogens degradation 82
4-1-4 Antioxidant response 93
4-2 Effect of light intensity 97
4-2-1 Biomass productivity and CO2 fixation rate 97
4-2-2 Medium utilization 101
4-2-3 Estrogens degradation 104
4-2-4 Antioxidant response 109
4-3 Effect of initial nitrate concentration 113
4-3-1 Biomass productivity and CO2 fixation rate 113
4-3-2 Medium utilization 117
4-3-3 Estrogens degradation 119
4-3-4 Antioxidant response 124
4-4 Evaluation of the combined effects of initial E2 concentration, light intensity, and initial nitrate concentration on CO2 fixation rate, estrogens removal kinetics and carotenoids contents. 128
4-4-1 CO2 fixation rate 128
4-4-2 Estrogens degradation kinetics 129
4-4-3 Carotenoids productivity 130
Chapter 5 Conclusion and Suggestion 132
5-1 Conclusion 132
5-2 Suggestion 133
References 134

參考文獻 Abalde, J., Fabregas, J., Herrero, C., 1991. β-Carotene, vitamin C and vitamin E content of the marine microalga Dunaliella tertiolecta cultured with different nitrogen sources. Bioresource technology 38, 121-125.
Akkerman, I., Janssen, M., Rocha, J., Wijffels, R.H., 2002. Photobiological hydrogen production: photochemical efficiency and bioreactor design. International journal of hydrogen energy 27, 1195-1208.
Alexy, R., Kümpel, T., Kümmerer, K., 2004. Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere 57, 505-512.
Andersen, H., Siegrist, H., Halling-Sørensen, B., Ternes, T.A., 2003. Fate of estrogens in a municipal sewage treatment plant. Environmental science & technology 37, 4021-4026.
Anjos, M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A., Dragone, G., 2013. Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology 139, 149-154.
Arias, A.H., Souissi, A., Glippa, O., Roussin, M., Dumoulin, D., Net, S., Ouddane, B., Souissi, S., 2016. Removal and biodegradation of Phenanthrene, fluoranthene and pyrene by the marine algae Rhodomonas baltica enriched from North Atlantic coasts. Bulletin of Environmental Contamination and Toxicology, 1-8.
Armstrong, G.A., Hearst, J.E., 1996. Carotenoids 2: Genetics and molecular biology of carotenoid pigment biosynthesis. The FASEB Journal 10, 228-237.
Béchet, Q., Shilton, A., Park, J.B., Craggs, R.J., Guieysse, B., 2011. Universal temperature model for shallow algal ponds provides improved accuracy. Environmental science & technology 45, 3702-3709.
Bach, L.T., Mackinder, L., Schulz, K.G., Wheeler, G., Schroeder, D.C., Brownlee, C., Riebesell, U., 2013. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist 199, 121-134.
Badger, M.R., 1987. The CO2-concentrating mechanism in aquatic phototrophs. The Biochemistry of plants: a comprehensive treatise (USA).
Barreiros, L., Queiroz, J.F., Magalhães, L.M., Silva, A.M.T., Segundo, M.A., 2016. Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices — A review. Microchemical Journal 126, 243-262.
Basu, S., Roy, A.S., Mohanty, K., Ghoshal, A.K., 2013. Enhanced CO 2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresource technology 143, 369-377.
Batista, A.P., Gouveia, L., Bandarra, N.M., Franco, J.M., Raymundo, A., 2013. Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research 2, 164-173.
Benotti, M.J., Trenholm, R.A., Vanderford, B.J., Holady, J.C., Stanford, B.D., Snyder, S.A., 2008. Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environmental science & technology 43, 597-603.
Bergmann, P., Trösch, W., 2016. Repeated fed-batch cultivation of Thermosynechococcus elongatus BP-1 in flat-panel airlift photobioreactors with static mixers for improved light utilization: Influence of nitrate, carbon supply and photobioreactor design. Algal Research 17, 79-86.
Bilanovic, D., Andargatchew, A., Kroeger, T., Shelef, G., 2009. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – Response surface methodology analysis. Energy Conversion and Management 50, 262-267.
Biodegradability, R., 1992. OECD Guideline for testing of chemicals. Organisation for Economic Co-operation and Development, Paris.
Braun, B.Z., 1974. Light absorption, emission and photosynthesis. Botanical monographs.
Cédat, B., de Brauer, C., Métivier, H., Dumont, N., Tutundjan, R., 2016. Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale. Water Research 100, 357-366.
Cabello, J., Toledo-Cervantes, A., Sánchez, L., Revah, S., Morales, M., 2015. Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under nitrogen replete and deplete conditions. Bioresource Technology 181, 128-135.
Calicioglu, O., Demirer, G.N., 2016. Biogas Production from Waste Microalgal Biomass Obtained from Nutrient Removal of Domestic Wastewater. Waste and Biomass Valorization 7, 1397-1408.
Campenni, L., Nobre, B.P., Santos, C.A., Oliveira, A., Aires-Barros, M., Palavra, A., Gouveia, L., 2013. Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Applied microbiology and biotechnology 97, 1383-1393.
Carballa, M., Omil, F., Lema, J.M., Llompart, M.a., Garcı́a-Jares, C., Rodrı́guez, I., Gómez, M., Ternes, T., 2004. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research 38, 2918-2926.
Çelekli, A., Kapı, M., Bozkurt, H., 2013. Effect of Cadmium on Biomass, Pigmentation, Malondialdehyde, and Proline of Scenedesmus quadricauda var. longispina. Bulletin of Environmental Contamination and Toxicology 91, 571-576.
Chang, H., Wan, Y., Wu, S., Fan, Z., Hu, J., 2011. Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: Comparison to estrogens. Water Research 45, 732-740.
Cheah, W.Y., Show, P.L., Chang, J.-S., Ling, T.C., Juan, J.C., 2015. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology 184, 190-201.
Chekroun, K.B., Sánchez, E., Baghour, M., 2014. The role of algae in bioremediation of organic pollutants. Int. Res. J. Public Environ. Health 1, 19-32.
Chen, C.-Y., Wen, T.-Y., Wang, G.-S., Cheng, H.-W., Lin, Y.-H., Lien, G.-W., 2007. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Science of The Total Environment 378, 352-365.
Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., Chang, J.-S., 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource technology 102, 71-81.
Chen, H.-h., 2009. CO2-fixation by a Cyanobacterial strain, Thermosynechococcus sp. CL-1, and its Potential Bioenergy Composition Analysis. National Cheng Kung University, 1-190.
Chen, H., Jiang, J.-G., 2011. Toxic effects of chemical pesticides (trichlorfon and dimehypo) on Dunaliella salina. Chemosphere 84, 664-670.
Chen, T.-S., Chen, T.-C., Yeh, K.-J.C., Chao, H.-R., Liaw, E.-T., Hsieh, C.-Y., Chen, K.-C., Hsieh, L.-T., Yeh, Y.-L., 2010. High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot. Science of The Total Environment 408, 3223-3230.
Chen, T.F., Zheng, W.J., Wong, Y.S., Yang, F., 2008. Selenium‐induced Changes in Activities of Antioxidant Enzymes and Content of Photosynthetic Pigments in Spirulina platensis. Journal of integrative plant biology 50, 40-48.
Chen, Y., Zhang, K., Zuo, Y., 2013. Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions. Science of the Total Environment 463, 802-809.
Chimchirian, R.F., Suri, R.P., Fu, H., 2007. Free synthetic and natural estrogen hormones in influent and effluent of three municipal wastewater treatment plants. Water Environment Research 79, 969-974.
Chiou, T.-J., Chu, S.-T., Tzeng, W.-F., 2003. Protection of cells from menadione-induced apoptosis by inhibition of lipid peroxidation. Toxicology 191, 77-88.
Chou, P.-H., Lin, Y.-L., Liu, T.-C., Chen, K.-Y., 2015. Exploring potential contributors to endocrine disrupting activities in Taiwan’s surface waters using yeast assays and chemical analysis. Chemosphere 138, 814-820.
Chowdhury, R.R., Charpentier, P.A., Ray, M.B., 2011. Photodegradation of 17β-estradiol in aquatic solution under solar irradiation: Kinetics and influencing water parameters. Journal of Photochemistry and Photobiology A: Chemistry 219, 67-75.
Cicek, N., Londry, K., Oleszkiewicz, J.A., Wong, D., Lee, Y., 2007. Removal of selected natural and synthetic estrogenic compounds in a Canadian full-scale municipal wastewater treatment plant. Water Environment Research 79, 795-800.
Clara, M., Kreuzinger, N., Strenn, B., Gans, O., Kroiss, H., 2005. The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Research 39, 97-106.
Clotfelter, E.D., Bell, A.M., Levering, K.R., 2004. The role of animal behaviour in the study of endocrine-disrupting chemicals. Animal Behaviour 68, 665-676.
Coesel, S.N., Baumgartner, A.C., Teles, L.M., Ramos, A.A., Henriques, N.M., Cancela, L., Varela, J.C.S., 2008. Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Marine Biotechnology 10, 602.
COP21, 2015. Framework Convention on Climate Change.
Craggs, R.J., Adey, W.H., Jenson, K.R., St. John, M.S., Green, F.B., Oswald, W.J., 1996. Phosphorus removal from wastewater using an algal turf scrubber. Water Science and Technology, pp. 191-198.
D’Alessandro, E.B., Antoniosi Filho, N.R., 2016. Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews 58, 832-841.
da Rosa, G.M., Moraes, L., Cardias, B.B., Costa, J.A.V., 2015. Chemical absorption and CO 2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresource technology 192, 321-327.
Dai, A., 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3, 52-58.
de-Bashan, L.E., Bashan, Y., 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource technology 101, 1611-1627.
de Godos, I., Arbib, Z., Lara, E., Rogalla, F., 2016. Evaluation of High Rate Algae Ponds for treatment of anaerobically digested wastewater: Effect of CO2 addition and modification of dilution rate. Bioresource Technology 220, 253-261.
De Rudder, J., Van de Wiele, T., Dhooge, W., Comhaire, F., Verstraete, W., 2004. Advanced water treatment with manganese oxide for the removal of 17α-ethynylestradiol (EE2). Water Research 38, 184-192.
de Wilt, A., Butkovskyi, A., Tuantet, K., Leal, L.H., Fernandes, T.V., Langenhoff, A., Zeeman, G., 2016. Micropollutant removal in an algal treatment system fed with source separated wastewater streams. Journal of hazardous materials 304, 84-92.
Del Campo, J.A., Moreno, J., Rodrı́guez, H., Angeles Vargas, M., Rivas, J.n., Guerrero, M.G., 2000. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology 76, 51-59.
Dismukes, G.C., Carrieri, D., Bennette, N., Ananyev, G.M., Posewitz, M.C., 2008. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology 19, 235-240.
Donald, D.B., Bogard, M.J., Finlay, K., Bunting, L., Leavitt, P.R., 2013. Phytoplankton-specific response to enrichment of phosphorus-rich surface waters with ammonium, nitrate, and urea. PloS one 8, e53277.
Dotan, P., Godinger, T., Odeh, W., Groisman, L., Al-Khateeb, N., Rabbo, A.A., Tal, A., Arnon, S., 2016. Occurrence and fate of endocrine disrupting compounds in wastewater treatment plants in Israel and the Palestinian West Bank. Chemosphere 155, 86-93.
Duarte, J.H., Fanka, L.S., Costa, J.A.V., 2016. Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresource Technology 214, 159-165.
Duncan, L.A., Tyner, J.S., Buchanan, J.R., Hawkins, S.A., Lee, J., 2015. Fate and transport of 17β-estradiol beneath animal waste holding ponds. Journal of environmental quality 44, 982-988.
Eberly, J.O., Ely, R.L., 2012. Photosynthetic accumulation of carbon storage compounds under CO2 enrichment by the thermophilic cyanobacterium Thermosynechococcus elongatus. Journal of industrial microbiology & biotechnology 39, 843-850.
Eckert, J., Foote, E., Rollison, L., Walter, L., 1967. Absorption processes utilizing packed towers. Industrial & Engineering Chemistry 59, 41-47.
El-Sheekh, M., Hamouda, R., 2014. Biodegradation of crude oil by some cyanobacteria under heterotrophic conditions. Desalination and Water Treatment 52, 1448-1454.
Farrelly, D.J., Everard, C.D., Fagan, C.C., McDonnell, K.P., 2013. Carbon sequestration and the role of biological carbon mitigation: A review. Renewable and Sustainable Energy Reviews 21, 712-727.
Fernandez, M.P., Ikonomou, M.G., Buchanan, I., 2007. An assessment of estrogenic organic contaminants in Canadian wastewaters. Science of The Total Environment 373, 250-269.
Fitzgerald, G.P., Gerloff, G.C., Skoog, F., 1952. Studies on chemicals with selective toxicity to blue-green algae. Sewage and Industrial Wastes, 888-896.
Franchino, M., Tigini, V., Varese, G.C., Sartor, R.M., Bona, F., 2016. Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate. Science of the Total Environment 569, 40-45.
Frazer, G., Lertzman, K.P., Trofymow, J.A., 1997. A method for estimating canopy openness, effective leaf area index, and photosynthetically active photon flux density using hemispherical photography and computerized image analysis techniques. Pacific Forestry Centre Victoria, BC.
Fu, W., Guðmundsson, Ó., Paglia, G., Herjólfsson, G., Andrésson, Ó.S., Palsson, B.Ø., Brynjólfsson, S., 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Applied Microbiology and Biotechnology 97, 2395-2403.
Fukuhara, T., Iwasaki, S., Kawashima, M., Shinohara, O., Abe, I., 2006. Adsorbability of estrone and 17β-estradiol in water onto activated carbon. Water Research 40, 241-248.
Furuichi, T., Kannan, K., Suzuki, K., Tanaka, S., Giesy, J.P., Masunaga, S., 2006. Occurrence of estrogenic compounds in and removal by a swine farm waste treatment plant. Environmental science & technology 40, 7896-7902.
Gañán, J., Pérez-Quintanilla, D., Morante-Zarcero, S., Sierra, I., 2013. Comparison of different mesoporous silicas for off-line solid phase extraction of 17β-estradiol from waters and its determination by HPLC-DAD. Journal of Hazardous Materials 260, 609-617.
Gao, J., Chi, J., 2015. Biodegradation of phthalate acid esters by different marine microalgal species. Marine Pollution Bulletin 99, 70-75.
Gao, Q.T., Wong, Y.S., Tam, N.F.Y., 2011. Removal and biodegradation of nonylphenol by different Chlorella species. Marine Pollution Bulletin 63, 445-451.
Gavrilescu, M., Chisti, Y., 2005. Biotechnology—a sustainable alternative for chemical industry. Biotechnology advances 23, 471-499.
Ghosh, T., Paliwal, C., Maurya, R., Mishra, S., 2015. Microalgal rainbow colours for nutraceutical and pharmaceutical applications. Plant Biology and Biotechnology. Springer, pp. 777-791.
Gore, A.C., 2007. Introduction to endocrine-disrupting chemicals. Endocrine-Disrupting Chemicals. Springer, pp. 3-8.
Guedes, A.C., Amaro, H.M., Malcata, F.X., 2011. Microalgae as sources of carotenoids. Marine drugs 9, 625-644.
Gupta, H., Fan, L.-S., 2002. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Industrial & engineering chemistry research 41, 4035-4042.
Hanselman, T.A., Graetz, D.A., Wilkie, A.C., 2003. Manure-borne estrogens as potential environmental contaminants: a review. Environmental Science & Technology 37, 5471-5478.
Hansen, J., Ruedy, R., Sato, M., Lo, K., 2010. Global surface temperature change. Reviews of Geophysics 48.
Haritash, A., Kaushik, C., 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of hazardous materials 169, 1-15.
Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics 125, 189-198.
Henry, T.B., Black, M.C., 2008. Acute and Chronic Toxicity of Fluoxetine (Selective Serotonin Reuptake Inhibitor) in Western Mosquitofish. Archives of Environmental Contamination and Toxicology 54, 325-330.
Ho, S., Chen, C., Chang, J., 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology 113, 244-252.
Holbrook, R.D., Love, N.G., Novak, J.T., 2004. Sorption of 17β-estradiol and 17α-ethinylestradiol by colloidal organic carbon derived from biological wastewater treatment systems. Environmental science & technology 38, 3322-3329.
Hom-Diaz, A., Llorca, M., Rodríguez-Mozaz, S., Vicent, T., Barceló, D., Blánquez, P., 2015. Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. Journal of Environmental Management 155, 106-113.
Hrouzková, S., Matisová, E., 2012. Endocrine disrupting pesticides. Pesticide—Advances in Chemical and Botanical Pesticides, 99-126.
Hsieh, C.Y., Liaw, E.T., Fan, K.M., 2015. Removal of veterinary antibiotics, alkylphenolic compounds, and estrogens from the Wuluo constructed wetland in southern Taiwan. Journal of Environmental Science and Health, Part A 50, 151-160.
Hsueh, H., Chu, H., Yu, S.-T., 2007a. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 66, 878-886.
Hsueh, H.T., Chu, H., Chang, C.C., 2007b. Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon. Environmental science & technology 41, 1909-1914.
Hsueh, H.T., Li, W.J., Chen, H.H., Chu, H., 2009. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. Journal of Photochemistry and Photobiology B: Biology 95, 33-39.
Huang, C., Zhang, Z., Wu, S., Zhao, Y., Hu, J., 2010. Invitro and in vivo estrogenic effects of 17α-estradiol in medaka (Oryziaslatipes). Chemosphere 80, 608-612.
Ifelebuegu, A., 2011. The fate and behavior of selected endocrine disrupting chemicals in full scale wastewater and sludge treatment unit processes. International Journal of Environmental Science & Technology 8, 245-254.
Inoue, N., Taira, Y., Emi, T., Yamane, Y., Kashino, Y., Koike, H., Satoh, K., 2001. Acclimation to the growth temperature and the high-temperature effects on photosystem II and plasma membranes in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant and Cell Physiology 42, 1140-1148.
IPCC, 2014. .
Ito, A., Mensah, L., Cartmell, E., Lester, J.N., 2016. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor. Environmental Technology 37, 415-421.
Jürgens, M.D., Holthaus, K.I., Johnson, A.C., Smith, J.J., Hetheridge, M., Williams, R.J., 2002. The potential for estradiol and ethinylestradiol degradation in English rivers. Environmental Toxicology and Chemistry 21, 480-488.
Ji, M.-K., Kabra, A.N., Choi, J., Hwang, J.-H., Kim, J.R., Abou-Shanab, R.A., Oh, Y.-K., Jeon, B.-H., 2014. Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecological Engineering 73, 260-269.
Jin, S., Yang, F., Liao, T., Hui, Y., Xu, Y., 2008. Seasonal variations of estrogenic compounds and their estrogenicities in influent and effluent from a municipal sewage treatment plant in China. Environmental Toxicology and Chemistry 27, 146-153.
John, H., 2005. Global warming. Reports on Progress in Physics 68, 1343.
Johnson, A.C., Williams, R.J., 2004. A model to estimate influent and effluent concentrations of estradiol, estrone, and ethinylestradiol at sewage treatment works. Environmental science & technology 38, 3649-3658.
Johnson, A.C., Williams, R.J., Simpson, P., Kanda, R., 2007. What difference might sewage treatment performance make to endocrine disruption in rivers? Environmental Pollution 147, 194-202.
Ke, L., Luo, L., Wang, P., Luan, T., Tam, N.F.-Y., 2010. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresource technology 101, 6950-6961.
Kimura, K., Toshima, S., Amy, G., Watanabe, Y., 2004. Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. Journal of Membrane Science 245, 71-78.
Klingelhöfer, I., Morlock, G.E., 2015. Bioprofiling of Surface/Wastewater and Bioquantitation of Discovered Endocrine-Active Compounds by Streamlined Direct Bioautography. Analytical chemistry 87, 11098-11104.
Kurade, M.B., Kim, J.R., Govindwar, S.P., Jeon, B.-H., 2016. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: Microalgal tolerance to xenobiotic pollutants and metabolism. Algal Research 20, 126-134.
Kuster, M., de Alda, M.J.L., Barceló, D., 2004. Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments. TrAC Trends in Analytical Chemistry 23, 790-798.
Labadie, P., Budzinski, H., 2005. Determination of steroidal hormone profiles along the Jalle d'Eysines River (near Bordeaux, France). Environmental Science & Technology 39, 5113-5120.
Lai, K., Scrimshaw, M., Lester, J., 2002. Biotransformation and bioconcentration of steroid estrogens by Chlorella vulgaris. Applied and environmental microbiology 68, 859-864.
Lamers, P.P., van de Laak, C.C., Kaasenbrood, P.S., Lorier, J., Janssen, M., De Vos, R.C., Bino, R.J., Wijffels, R.H., 2010. Carotenoid and fatty acid metabolism in light‐stressed Dunaliella salina. Biotechnology and bioengineering 106, 638-648.
Lapointe, B.E., Tenore, K.R., 1981. Experimental outdoor studies with Ulva fasciata Delile. I. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition. Journal of Experimental Marine Biology and Ecology 53, 135-152.
Lee, E., Pruvost, J., He, X., Munipalli, R., Pilon, L., 2014. Design tool and guidelines for outdoor photobioreactors. Chemical Engineering Science 106, 18-29.
Lee, H.B., Liu, D., 2002. Degradation of 17β-Estradiol and its Metabolites by Sewage Bacteria. Water, Air, and Soil Pollution 134, 351-366.
Lee, L.S., Strock, T.J., Sarmah, A.K., Rao, P.S.C., 2003. Sorption and dissipation of testosterone, estrogens, and their primary transformation products in soils and sediment. Environmental science & technology 37, 4098-4105.
Li, J., Fu, J., Xiang, X., Wu, M., Liu, X., 2013. Kinetics, equilibrium, and mechanisms of sorption and desorption of 17α-ethinyl estradiol in two natural soils and their organic fractions. Science of The Total Environment 452–453, 404-410.
Li, T.-Y., 2015. Effects of cultivation conditions on the CO2 fixation rate and production of zeaxanthin and β-carotene by Thermosynechococcus sp. CL-1. National Cheng Kung University.
Liu, J., Weinbauer, M.G., Maier, C., Dai, M., Gattuso, J.-P., 2010. Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquatic Microbial Ecology 61, 291-305.
Liu, S., Ying, G.-G., Zhang, R.-Q., Zhou, L.-J., Lai, H.-J., Chen, Z.-F., 2012. Fate and occurrence of steroids in swine and dairy cattle farms with different farming scales and wastes disposal systems. Environmental pollution 170, 190-201.
Liu, Z.-h., Kanjo, Y., Mizutani, S., 2009. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment — physical means, biodegradation, and chemical advanced oxidation: A review. Science of The Total Environment 407, 731-748.
Luo, L., Wang, P., Lin, L., Luan, T., Ke, L., Tam, N.F.Y., 2014. Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochemistry 49, 1723-1732.
Maadane, A., Merghoub, N., Ainane, T., El Arroussi, H., Benhima, R., Amzazi, S., Bakri, Y., Wahby, I., 2015. Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. Journal of Biotechnology 215, 13-19.
Markou, G., Georgakakis, D., 2011. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Applied Energy 88, 3389-3401.
Marnett, L.J., 2002. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 181–182, 219-222.
Massart, F., Parrino, R., Seppia, P., Federico, G., Saggese, G., 2006. How do environmental estrogen disruptors induce precocious puberty? Minerva pediatrica 58, 247-254.
Matamoros, V., Uggetti, E., García, J., Bayona, J.M., 2016. Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. Journal of Hazardous Materials 301, 197-205.
Miller, A.G., Espie, G.S., Canvin, D.T., 1990. Physiological aspects of CO2 and HCO3-transport by cyanobacteria: a review. Canadian Journal of Botany 68, 1291-1302.
Minguez-Mosquera, M.I., Hornero-Mendez, D., 1993. Separation and quantification of the carotenoid pigments in red peppers (Capsicum annuum L.), paprika, and oleoresin by reversed-phase HPLC. Journal of Agricultural and Food Chemistry 41, 1616-1620.
Minhas, A.k., Hodgson, P., Barrow, C., Adholeya, A., 2016. A Review on the Assessment of Stress conditions for Simultaneous Production of Microalgal Lipids and Carotenoids. Frontiers in Microbiology 7.
Msanne, J., Xu, D., Konda, A.R., Casas-Mollano, J.A., Awada, T., Cahoon, E.B., Cerutti, H., 2012. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75, 50-59.
Muñoz, I., López‐Doval, J.C., Ricart, M., Villagrasa, M., Brix, R., Geiszinger, A., Ginebreda, A., Guasch, H., de Alda, M., Romaní, A.M., 2009. Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat river basin (northeast Spain). Environmental Toxicology and Chemistry 28, 2706-2714.
Murray, K.E., Thomas, S.M., Bodour, A.A., 2010. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environmental Pollution 158, 3462-3471.
Nghiem, L., Manis, A., Soldenhoff, K., Schäfer, A., 2004. Estrogenic hormone removal from wastewater using NF/RO membranes. Journal of Membrane Science 242, 37-45.
Nkoa, R., 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development 34, 473-492.
NOAAESRL, 2016. . www.esrl.noaa.gov/gmd/ccgg/trends/.
Norvill, Z.N., Shilton, A., Guieysse, B., 2016. Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps. Journal of hazardous materials 313, 291-309.
Nurdogan, Y., Oswald, W.J., 1995. Enhanced nutrient removal in high-rate ponds. Water Science and Technology 31, 33-43.
Olguín, E.J., Sánchez-Galván, G., 2012. Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnology 30, 3-8.
Oliver, J., Palou, A., 2000. Chromatographic determination of carotenoids in foods. Journal of chromatography A 881, 543-555.
Paliwal, C., Pancha, I., Ghosh, T., Maurya, R., Chokshi, K., Bharadwaj, S.V., Ram, S., Mishra, S., 2015. Selective carotenoid accumulation by varying nutrient media and salinity in Synechocystis sp. CCNM 2501. Bioresource technology 197, 363-368.
Park, J., Craggs, R., Shilton, A., 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresource technology 102, 35-42.
Pavlostathis, S.G., Prytula, M.T., Yeh, D.H., 2003. Potential and limitations of microbial reductive dechlorination for bioremediation applications. Water, Air and Soil Pollution: Focus 3, 117-129.
Pessoa, G.P., de Souza, N.C., Vidal, C.B., Alves, J.A.C., Firmino, P.I.M., Nascimento, R.F., dos Santos, A.B., 2014. Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Science of The Total Environment 490, 288-295.
Peterson, E.W., Hanna, L.A., 2016. Estrogen reduction in a coupled wetland and ground water flow-through system.
Prater, J.R., Horton, R., Thompson, M.L., 2015. Reduction of estrone to 17 β-estradiol in the presence of swine manure colloids. Chemosphere 119, 642-645.
Preziosi, P., 1998. Endocrine disrupters as environmental signallers: an introduction. Pure Appl. Chem. 70, 1617-1631.
Přibyl, P., Pilný, J., Cepák, V., Kaštánek, P., 2016. The role of light and nitrogen in growth and carotenoid accumulation in Scenedesmus sp. Algal Research 16, 69-75.
Pulz, O., Gross, W., 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65, 635-648.
Racz, L., Goel, R.K., 2010. Fate and removal of estrogens in municipal wastewater. Journal of Environmental Monitoring 12, 58-70.
Ramanan, R., Kannan, K., Deshkar, A., Yadav, R., Chakrabarti, T., 2010. Enhanced algal CO 2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresource Technology 101, 2616-2622.
Rao, A.V., Rao, L.G., 2007. Carotenoids and human health. Pharmacological Research 55, 207-216.
Razzak, S.A., Hossain, M.M., Lucky, R.A., Bassi, A.S., de Lasa, H., 2013. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Reviews 27, 622-653.
Ren, Y.-X., Nakano, K., Nomura, M., Chiba, N., Nishimura, O., 2007. A thermodynamic analysis on adsorption of estrogens in activated sludge process. Water research 41, 2341-2348.
Rosenfeldt, E.J., Linden, K.G., 2004. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environmental Science & Technology 38, 5476-5483.
Rudder, J.d., Wiele, T.V.d., Dhooge, W., Comhaire, F., Verstraete, W., 2004. Advanced water treatment with manganese oxide for the removal of 17α-ethynylestradiol (EE2). Water Research 38, 184-192.
Schmidt, É.C., Marthiellen, R.d.L., Kreusch, M.G., Pereira, D.T., Costa, G.B., Simioni, C., Ouriques, L.C., Steiner, N., Chow, F., Floh, E.S., 2016. Profiles of carotenoids and amino acids and total phenolic compounds of the red alga Pterocladiella capillacea exposed to cadmium and different salinities. Journal of Applied Phycology 28, 1955-1963.
Schmidt, W., O’Rourke, K., Hernan, R., Quinn, B., 2011. Effects of the pharmaceuticals gemfibrozil and diclofenac on the marine mussel (Mytilus spp.) and their comparison with standardized toxicity tests. Marine pollution bulletin 62, 1389-1395.
Shashirekha, S., Uma, L., Subramanian, G., 1997. Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. Journal of Industrial Microbiology and Biotechnology 19, 130-133.
Shi, W., Wang, L., Rousseau, D.P., Lens, P.N., 2010. Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems. Environmental Science and Pollution Research 17, 824-833.
Shimizu, I., Yoshikawa, H., Kamochi, M., Nakayama, Y., 2012. Gender difference in alcoholic liver disease. INTECH Open Access Publisher.
Shue, M.-F., Chen, F.-A., Chen, T.-C., 2010. Total estrogenic activity and nonylphenol concentration in the Donggang River, Taiwan. Environmental monitoring and assessment 168, 91-101.
Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., DeCarolis, J., Oppenheimer, J., Wert, E.C., Yoon, Y., 2007. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202, 156-181.
Song, W., Ding, Y., Chiou, C.T., Li, H., 2010. Selected veterinary pharmaceuticals in agricultural water and soil from land application of animal manure. Journal of environmental quality 39, 1211-1217.
Stibal, M., Šabacká, M., Kaštovská, K., 2006. Microbial Communities on Glacier Surfaces in Svalbard: Impact of Physical and Chemical Properties on Abundance and Structure of Cyanobacteria and Algae. Microbial Ecology 52, 644-654.
Su, C.M., Hsueh, H.T., Chen, H.H., Chu, H., 2012. Effects of dissolved inorganic carbon and nutrient levels on carbon fixation and properties of Thermosynechococcus sp. in a continuous system. Chemosphere 88, 706-711.
Su, C.M., Hsueh, H.T., Li, T.Y., Huang, L.C., Chu, Y.L., Tseng, C.M., Chu, H., 2013. Effects of light availability on the biomass production, CO 2 fixation, and bioethanol production potential of Thermosynechococcus CL-1. Bioresource technology 145, 162-165.
Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R., 2011. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnology advances 29, 896-907.
Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R., 2013. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment international 51, 59-72.
Sumpter, J.P., Johnson, A.C., 2005. Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environmental Science & Technology 39, 4321-4332.
Swarnalatha, G.V., Hegde, N.S., Chauhan, V.S., Sarada, R., 2015. The effect of carbon dioxide rich environment on carbonic anhydrase activity, growth and metabolite production in indigenous freshwater microalgae. Algal Research 9, 151-159.
Takeuchi, T., Utsunomiya, K., Kobayashi, K., Owada, M., Karube, I., 1992. Carbon dioxide fixation by a unicellular green alga Oocystis sp. Journal of biotechnology 25, 261-267.
Tanaka, H., Yakou, Y., Takahashi, A., Higashitani, T., Komori, K., 2001. Comparison between estrogenicities estimated from DNA recombinant yeast assay and from chemical analyses of endocrine disruptors during sewage treatment. Water Science and Technology 43, 125-132.
Tapiero, H., Ba, G.N., Tew, K., 2002. Estrogens and environmental estrogens. Biomedicine & pharmacotherapy 56, 36-44.
Taylor, K.L., Brackenridge, A.E., Vivier, M.A., Oberholster, A., 2006. High-performance liquid chromatography profiling of the major carotenoids in Arabidopsis thaliana leaf tissue. Journal of Chromatography A 1121, 83-91.
Ternes, T.A., Kreckel, P., Mueller, J., 1999. Behaviour and occurrence of estrogens in municipal sewage treatment plants—II. Aerobic batch experiments with activated sludge. Science of the Total Environment 225, 91-99.
Thermo-Fisher-Scientific, Thermo Scientific HyperSep Solid Phase Extraction Method Development Guide.
Tredici, M.R., 2004. Mass production of microalgae: photobioreactors. Handbook of microalgal culture: Biotechnology and applied phycology 1, 178-214.
Tsiaka, P., Tsarpali, V., Ntaikou, I., Kostopoulou, M.N., Lyberatos, G., Dailianis, S., 2013. Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. Ecotoxicology 22, 1208-1220.
Ugwu, C., Aoyagi, H., Uchiyama, H., 2008. Photobioreactors for mass cultivation of algae. Bioresource technology 99, 4021-4028.
Umamaheswari, J., Shanthakumar, S., 2016. Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Reviews in Environmental Science and Bio/Technology 15, 265-284.
USEPA, 2012. Contaminant Candidate List 3. https://www.epa.gov/ccl/contaminant-candidate-list-3-ccl-3#chemical-list.
USEPA, 2016. Endocrine Disruption. https://www.epa.gov/endocrine-disruption.
Vasumathi, K., Premalatha, M., Subramanian, P., 2012. Parameters influencing the design of photobioreactor for the growth of microalgae. Renewable and Sustainable Energy Reviews 16, 5443-5450.
Vethaak, A.D., Lahr, J., Schrap, S.M., Belfroid, A.C., Rijs, G.B., Gerritsen, A., de Boer, J., Bulder, A.S., Grinwis, G.C., Kuiper, R.V., 2005. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere 59, 511-524.
Wang, B., Li, Y., Wu, N., Lan, C.Q., 2008. CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology 79, 707-718.
Wang, P., Wong, M., Tam, N., 2013. Antioxidant responses of two microalgae, Selenastrum capricornutum and Chlorella sp., to estradiol and ethinylestradiol. Journal of applied phycology 25, 891-903.
Wang, P., Wong, Y.-S., Tam, N.F.-Y., 2017. Green microalgae in removal and biotransformation of estradiol and ethinylestradiol. Journal of Applied Phycology 29, 263-273.
Woertz, I., Feffer, A., Lundquist, T., Nelson, Y., 2009. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. Journal of Environmental Engineering 135, 1115-1122.
World-resources-institute, 2016. http://www.wri.org/indc-definition.
Xiong, J.-Q., Kurade, M.B., Abou-Shanab, R.A.I., Ji, M.-K., Choi, J., Kim, J.O., Jeon, B.-H., 2016. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresource Technology 205, 183-190.
Xu, K., Harper, W.F., Zhao, D., 2008. 17α-Ethinylestradiol sorption to activated sludge biomass: thermodynamic properties and reaction mechanisms. Water research 42, 3146-3152.
Xu, N., Li, D., Dong, S., 1998. Diel balance of DO in mariculture ponds. Journal of fishery sciences of China/Zhongguo shui chan ke xue yan jiu yuan bian ji chu ban 6, 69-74.
Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I., 2008. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 20, 14-27.
Yeh, N., Chung, J.-P., 2009. High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews 13, 2175-2180.
Ying, G.-G., Toze, S., Hanna, J., Yu, X.-Y., Dillon, P.J., Kookana, R.S., 2008. Decay of endocrine-disrupting chemicals in aerobic and anoxic groundwater. Water Research 42, 1133-1141.
Yoshimoto, T., Nagai, F., Fujimoto, J., Watanabe, K., Mizukoshi, H., Makino, T., Kimura, K., Saino, H., Sawada, H., Omura, H., 2004. Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Applied and environmental microbiology 70, 5283-5289.
Zeng, X., Guo, X., Su, G., Danquah, M.K., Zhang, S., Lu, Y., Sun, Y., Lin, L., 2015. Bioprocess considerations for microalgal-based wastewater treatment and biomass production. Renewable and Sustainable Energy Reviews 42, 1385-1392.
Zhang, S., Qiu, C.B., Zhou, Y., Jin, Z.P., Yang, H., 2011. Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology 20, 337-347.
Zhang, Y., Habteselassie, M.Y., Resurreccion, E.P., Mantripragada, V., Peng, S., Bauer, S., Colosi, L.M., 2014. Evaluating removal of steroid estrogens by a model alga as a possible sustainability benefit of hypothetical integrated algae cultivation and wastewater treatment systems. ACS Sustainable Chemistry & Engineering 2, 2544-2553.
Zhao, B., Su, Y., 2014. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renewable and Sustainable Energy Reviews 31, 121-132.
Zheng, W., Li, X., Yates, S.R., Bradford, S.A., 2012. Anaerobic transformation kinetics and mechanism of steroid estrogenic hormones in dairy lagoon water. Environmental science & technology 46, 5471-5478.
Zheng, W., Yates, S.R., Bradford, S.A., 2007. Analysis of steroid hormones in a typical dairy waste disposal system. Environmental science & technology 42, 530-535.
Zhou, Y., Zha, J., Xu, Y., Lei, B., Wang, Z., 2012. Occurrences of six steroid estrogens from different effluents in Beijing, China. Environmental Monitoring and Assessment 184, 1719-1729.
Żwir-Ferenc, A., Biziuk, M., 2006. Solid phase extraction technique–trends, opportunities and applications. Polish Journal of Environmental Studies 15, 677-690.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw