進階搜尋


下載電子全文  
系統識別號 U0026-1207201716020300
論文名稱(中文) SS400鋼中鋁鈰脫氧脫硫之介在物預測模型與實驗驗證
論文名稱(英文) Thermodynamics Prediction of Cerium Inclusions in SS400 Steel and Experiment
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 方碩彥
研究生(英文) Shuo-Yen Fang
學號 N56044193
學位類別 碩士
語文別 中文
論文頁數 94頁
口試委員 指導教授-丁志明
口試委員-連雙喜
口試委員-蘇彥豪
中文關鍵字 熱力學計算  鈰添加介在物  Wagner’s交互作用  介在物形貌  介在物尺寸 
英文關鍵字 Thermodynamics calculation  Ce inclusions  Wagner’s formalism  size  shape morphology 
學科別分類
中文摘要 稀土應用於鋼中還在起步階段,本研究利用稀土鈰做為熱力學計算與實驗主要探討對象,目的建構一可預測介在物種類於不同鋼材成分與熱處理溫度之計算模組,為使計算方法盡可能地貼近實際煉鋼情況,由Wagner’s交互作用模型為基礎,考慮各種鋼水中雜質元素之相互影響,衍伸出兩步驟之計算,並將各步驟整理為一連續計算模組。模組之可靠性藉由實驗添加鈰於鋼中,並進行不同溫度之熱處理,後於SEM及EPMA下觀察及統計不同介在物種類出現之比例,進而與計算結果相互比較。
將不同實驗條件之鋼材進行介在物種類統計與分析,結果顯示與計算模組相符合,可確定其可靠性,其中可發現鈰添加進行深度脫氧後,試片硫氧含量分別於: [O]=5-11 ppm、[S]=8-30 ppm時,介在物種類常為Ce2O2S、Ce2O3、CeAlO3此三種介在物較穩定存在材料中,針對此三種較常出現之種類進行形貌、尺寸與型態深入分析,發現Ce2O2S尺寸常為2 μm左右,且形貌常為扁平正圓形,為一軟質介在物;Ce2O3則分布較為大型為3-4 μm且形貌較為凸出,偏向硬質介在物;CeAlO3尺寸與Ce2O2S接近,表面形貌常出現雙色分布,由EPMA分析可知其為Al分布不均所造成。
英文摘要 Oxide Metallurgy is a method that could be used to effectively utilize the formation of inclusions to improve the steel quality by pinning grain boundary or forming IAF. Previous studies shows that the deoxidization and desulphurization ability of Ce is higher than Al and Ti, the commercialized deoxidizer,. Therefore, Ce was chosen as the main deoxidizing agent in present research to form the inclusions that could be used to improve the steel quality and to reach the higher cleanliness of steel. In present study, we focus on predicting the inclusion types which could be applied to oxide metallurgy. Wagner’s interaction model (ai = fi * [% i ] ; log fi = ∑_i^j▒〖e_i^j*[ %i ]〗) was applied to build a calculation model to predict the formation of inclusions after the deoxidization and desulphurization process. A thermodynamic prediction module of Ce inclusions was constructed and shows a promising results which is proved by the experiment using Ce as the main deoxidizing agent. The sample was investigated after it was quenched from high temperature. There are three types of inclusion usually formed such as Ce2O2S, Ce2O3, CeAlO3. Furthermore, the size, shape morphology and profound characteristic of each type of inclusion were also studied.
論文目次 摘要 I
SUMMARY II
致謝 X
總目錄 XII
表目錄 XIV
圖目錄 XV
第一章 前言 - 1 -
1-1 研究背景 - 1 -
1-2 研究目的 - 3 -
第二章 文獻回顧 - 5 -
2-1 非金屬介在物 - 5 -
2-1-1 非金屬介在物簡介 - 5 -
2-1-2 非金屬介在物改質方式 - 6 -
2-2 氧化物冶金 - 7 -
2-2-1 氧化物冶金背景 - 7 -
2-2-2 氧化物冶金原理 - 8 -
2-2-3 氧化物冶金應用 - 10 -
2-3 稀土與非金屬介在物 - 11 -
2-3-1 稀土介紹 - 11 -
2-3-2 稀土在鋼中作用 - 13 -
第三章 實驗方法及步驟 - 20 -
3-1 介在物預測計算方法 - 20 -
3-1-1 第一階段交互作用-元素交互作用 - 21 -
3-1-2 第二階段交互作用-介在物交互作用 - 28 -
3-1-3 模組建立 - 33 -
3-2 實驗流程及步驟 - 40 -
3-2-1 鈰添加方法 - 40 -
3-2-2 二次熱處理 - 41 -
3-2-3 試片後處理 - 42 -
3-3 分析方法 - 48 -
3-3-1 化學組成分析 - 48 -
3-3-2 SEM/EDS介在物統計 - 48 -
3-3-3 EPMA介在物分析 - 49 -
3-3-4 TEM介在物分析 - 49 -
第四章 結果與討論 - 51 -
4-1 介在物種類模組計算結果 - 51 -
4-2 介在物種類預測計算與實驗結果對照 - 56 -
4-3 常見介在物特性分析 - 63 -
4-4 介在物形貌分布統計 - 74 -
4-5 介在物尺寸分布統計 - 82 -
第五章 結論 - 87 -
第六章 參考文獻 - 89 -
參考文獻 [1] C. W. Bale, and A. D. Pelton, “The unified interaction parameter formalism: thermodynamic consistency and applications,” Metallurgical and Materials Transactions A, vol. 21, no. 7, pp. 1997-2002, 1990.
[2] T.-I. Chung, J.-B. Lee, J.-G. Kang et al., “Thermodynamic interactions of Nb and Mo on Ti in liquid iron,” Materials transactions, vol. 49, no. 4, pp. 854-859, 2008.
[3] A. C. e Silva, “Interaction parameters of oxygen and deoxidants in liquid iron,” Journal of Mining and Metallurgy. Section B: Metallurgy, vol. 52, no. 1, pp. 41, 2016.
[4] A. D. Pelton, and C. W. Bale, “A modified interaction parameter formalism for non-dilute solutions,” Metallurgical and Materials Transactions A, vol. 17, no. 7, pp. 1211-1215, 1986.
[5] 張立峰, 李燕龍, and 任英, “鋼中非金属夾雜物的相關基礎研究 (Ⅰ)——非穩態澆鑄中的大颗粒夾雜物及夾雜物的形核, 長大, 運動, 去除和捕捉,” 鋼鐵, vol. 48, no. 11, pp. 1-10, 2013.
[6] 張立峰, 李燕龍, and 任英, “鋼中非金属夾雜物的相關基礎研究 (Ⅱ)——夾雜物檢測方法及脱氧熱力學基礎,” 鋼鐵, vol. 48, no. 12, pp. 1-8, 2013.
[7] Y. Sahai, and T. Emi, Tundish technology for clean steel production: World Scientific, 2008.
[8] 尹安遠, and 吴素君, “鋼中非金属夾雜物的鑑定,” 理化檢驗: 物理分册, vol. 43, no. 8, pp. 395-398, 2007.
[9] Y. Bi, A. Karasev, and P. G. Jönsson, “Three‐dimensional investigations of inclusions in ferroalloys,” steel research international, vol. 85, no. 4, pp. 659-669, 2014.
[10] R. Inoue, R. Kimura, S. Ueda et al., “Applicability of Nonaqueous Electrolytes for Electrolytic Extraction of Inclusion Particles Containing Zr, Ti, and Ce,” ISIJ international, vol. 53, no. 11, pp. 1906-1912, 2013.
[11] D. Janis, R. Inoue, A. Karasev et al., “Application of different extraction methods for investigation of nonmetallic inclusions and clusters in steels and alloys,” Advances in Materials Science and Engineering, vol. 2014, 2014.
[12] H. Feifei, L. Bo, L. Da et al., “Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refinement mechanism,” Journal of Rare Earths, vol. 29, no. 6, pp. 609-613, 2011.
[13] A. Katsumata, and H. Todoroki, “Effect of rare earth metal on inclusion composition in molten stainless steel,” Iron and Steelmaker(USA), vol. 29, no. 7, pp. 51-57, 2002.
[14] R. M. Ferrizz, R. J. Gorte, and J. M. Vohs, “Determining the Ce2O2S–CeOx phase boundary for conditions relevant to adsorption and catalysis,” Applied Catalysis B: Environmental, vol. 43, no. 3, pp. 273-280, 2003.
[15] F. Pickering, "Non-metallic inclusions in steel," Taylor & Francis, 1978.
[16] D. Y. Sheng, M. Söder, P. Jönsson et al., “Modeling micro‐inclusion growth and separation ingas‐stirred ladles,” Scandinavian journal of metallurgy, vol. 31, no. 2, pp. 134-147, 2002.
[17] G. Thewlis, “Effect of cerium sulphide particle dispersions on acicular ferrite microstructure development in steels,” Materials science and technology, vol. 22, no. 2, pp. 153-166, 2006.
[18] F. Cosandey, D. Li, F. Sczerzenie et al., “The effect of cerium on high temperature tensile and creep behavior of a superalloy,” Metallurgical and Materials Transactions A, vol. 14, no. 3, pp. 611-621, 1983.
[19] D. Li, F. Cosandey, G. Maurer et al., “Understanding the role of cerium during VIM refining of nickel-chromium and nickel-iron alloys,” Metallurgical Transactions B, vol. 13, no. 4, pp. 603-611, 1982.
[20] Y.-d. Li, C.-j. Liu, C.-l. Li et al., “A coupled thermodynamic model for prediction of inclusions precipitation during solidification of heat-resistant steel containing cerium,” Journal of Iron and Steel Research, International, vol. 22, no. 6, pp. 457-463, 2015.
[21] S. Ogibayashi, “Advances in technology of oxide metallurgy,” Nippon Steel Tech. Rep.(Japan), pp. 70-76, 1994.
[22] H. Bhadeshia, and R. Honeycombe, Steels: microstructure and properties: Butterworth-Heinemann, 2017.
[23] L. Holappaa, and O. Wijkb, “Inclusion Engineering,” Treatise on Process Metallurgy, Volume 3: Industrial Processes, vol. 3, pp. 347, 2013.
[24] S. S. Babu, “The mechanism of acicular ferrite in weld deposits,” Current opinion in Solid state and Materials Science, vol. 8, no. 3, pp. 267-278, 2004.
[25] W. Bin, and S. Bo, “In situ observation of the evolution of intragranular acicular ferrite at Ce‐containing inclusions in 16Mn steel,” steel research international, vol. 83, no. 5, pp. 487-495, 2012.
[26] M. Chapa, S. F. Medina, V. López et al., “Influence of Al and Nb on optimum Ti/N ratio in controlling austenite grain growth at reheating temperatures,” ISIJ international, vol. 42, no. 11, pp. 1288-1296, 2002.
[27] K. Alogab, D. Matlock, J. Speer et al., “The influence of niobium microalloying on austenite grain coarsening behavior of Ti-modified SAE 8620 steel,” ISIJ international, vol. 47, no. 2, pp. 307-316, 2007.
[28] D. Fairchild, D. Howden, and W. A. Clark, “The mechanism of brittle fracture in a microalloyed steel: part I. inclusion-induced cleavage,” Metallurgical and Materials Transactions A, vol. 31, no. 3, pp. 641-652, 2000.
[29] D. Fairchild, D. Howden, and W. A. Clark, “The mechanism of brittle fracture in a microalloyed steel: part II. mechanistic modeling,” Metallurgical and Materials Transactions A, vol. 31, no. 3, pp. 653-667, 2000.
[30] A. Kojima, A. Kiyose, R. Uemori et al., “Super high HAZ toughness technology with fine microstructure imparted by fine particles,” Shinnittetsu Giho, pp. 2-5, 2004.
[31] K. Zhu, and Z. Yang, “Effect of magnesium on the austenite grain growth of the heat-affected zone in low-carbon high-strength steels,” Metallurgical and Materials Transactions A, vol. 42, no. 8, pp. 2207-2213, 2011.
[32] M. Prikryl, A. Kroupa, G. Weatherly et al., “Precipitation behavior in a medium carbon, Ti-VN microalloyed steel,” Metallurgical and Materials Transactions A, vol. 27, no. 5, pp. 1149-1165, 1996.
[33] W. Yan, Y. Shan, and K. Yang, “Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels,” Metallurgical and Materials Transactions A, vol. 37, no. 7, pp. 2147-2158, 2006.
[34] 余景生, and 余宗森, "稀土在鋼鐵中的應用," 北京: 冶金工業出版社, 1987.
[35] 李振宏, and 伍虹, “我國稀土應用的現狀與前景,” 稀土, vol. 17, no. 6, pp. 48-53, 1996.
[36] G. Thewlis, W. Chao, P. Harrison et al., “Acicular ferrite development in autogenous laser welds using cerium sulphide particle dispersed steels,” Materials Science and Technology, vol. 24, no. 7, pp. 771-786, 2008.
[37] W. Bin, S. Bo, P. Ning et al., “Influence of Ce on characteristics of inclusions and microstructure of pure iron,” Journal of Iron and Steel Research, International, vol. 18, no. 2, pp. 38-44, 2011.
[38] S. K. Kwon, Y.-M. Kong, and J. H. Park, “Effect of Al deoxidation on the formation behavior of inclusions in Ce-added stainless steel melts,” Metals and Materials International, vol. 20, no. 5, pp. 959-966, 2014.
[39] C. C. Wu, X. H. Yang, and G. G. Cheng, "Formation conditions for Ce2O2S and CeAlO3 in cerium treated Al-killed steels." pp. 1032-1035.
[40] 黎文献, "鎂及鎂合金," 長沙: 中南大學出版社, 2005.
[41] J. Zhang, “Thermodynamic fundamentals of deoxidation equilibria.”
[42] Y. Ren, L. Zhang, W. Yang et al., “Formation and thermodynamics of Mg-Al-Ti-O complex inclusions in Mg-Al-Ti-deoxidized steel,” Metallurgical and Materials Transactions B, vol. 45, no. 6, pp. 2057-2071, 2014.
[43] J.-J. Pak, J.-O. Jo, S.-I. Kim et al., “Thermodynamics of titanium and oxygen dissolved in liquid iron equilibrated with titanium oxides,” ISIJ international, vol. 47, no. 1, pp. 16-24, 2007.
[44] L. Zhang, and W. Pluschkell, “Nucleation and growth kinetics of inclusions during liquid steel deoxidation,” Ironmaking & steelmaking, vol. 30, no. 2, pp. 106-110, 2003.
[45] O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermochemical properties of inorganic substances: Springer Berlin, 1991.
[46] Q. Han, Rare earth, alkaline earth and other elements in metallurgy: Ios PressInc, 1998.
[47] 郭锋, 林勤, and 孫學義, “稀土碳锰纯净鋼中夾雜物形成與轉化的熱力學計算及觀察分析,” 中國稀土學報, vol. 22, no. 5, pp. 614-618, 2004.
[48] 劉延强, 王麗君, 郭俊波 et al., “高鐵扣件弹簧鋼中含 Ce夾雜物生成的熱力學分析,” 中國有色金属學報, no. 3, pp. 720-726, 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-07-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-07-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw