參考文獻 |
B. Cockburn, C. W. Shu, emph{"The Runge-Kutta local projection P1-discontinuous
Galerkin method for scalar conservation laws"}, RAIRO Model. Math. Anal. Numer. vol. 25, No. 3, pp. 337-361 (1991).
B. Cockburn, C. W. Shu, emph{"TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for scalar conservation laws II: General framework"},
Math. Comp. vol. 52, No. 186, pp. 411-435 (1989).
B. Cockburn, C. W. Shu; S. Y. Lin, emph{"TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws III: One dimensional
systems"}, J. Comput. Phys. vol. 84, No. 1, pp. 90-113 (1989).
B. Cockburn, Suchung Hou, and Chi-Wang Shu, emph{"The runge-kutta local projection Discontinuous
Galerkin finite element method for conservation laws IV: The multidimensional case"},
Math. Comp. vol. 54, No. 190, pp. 545-581 (1990).
B. Cockburn, emph{"Discontinuous Galerkin methods"}, Plenary lecture presented
at the 80th Annual GAMM Conference, Augsburg, 25-28 March 2002.
Shock Capturing Schemes , II, J. comput. Phys. 32-78, 83(1989).
Claes Johnson, "Numerical solution of partial differential equations by the finite element method", CAMBRIDGE UNIVERSITY PRESS,
Cambridge New York New Rochelle Melbourne Sydney.
陳志明, emph{"A Discontinuous Finite Element Method for Hyperbolic Equations"}, 國立成功大學應用數學系研究所碩士論文, 民國八十三年六月.
S. Jund and S. Salmon, emph{"Arbitrary High-order Finite Element Schemes and Mass Lumping"},
Int. J. Appl. Math. Comput. Sui., Vol.17, No.3, 375-393, 2007.
Randall J.LeVeque, Numerical Methods for Conservation Laws, Second Edition.
Charles C. Dyer and Peter S. S. Ip, An Elementary Introduction to Scientific Computing, January 3, 2000.
|