進階搜尋


 
系統識別號 U0026-1207201110174100
論文名稱(中文) 甲醇蒸氣重組於微波雙重吸收環境中氫氣生成之建模與模擬
論文名稱(英文) Modeling and simulation of methanol steam reforming in an environment of microwave double absorption for hydrogen production
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 鄭宗杰
研究生(英文) Tsung-Chieh Cheng
學號 n16984036
學位類別 碩士
語文別 中文
論文頁數 94頁
口試委員 指導教授-洪振益
指導教授-陳維新
口試委員-洪瑞鴻
口試委員-楊授印
中文關鍵字 甲醇蒸氣重組  甲醇分解  麥斯威爾方程式  有限元素法  雷諾數  介電係數  操作條件 
英文關鍵字 Methanol steam reforming (MSR)  methanol decomposition (MD)  Maxwell’s equation  finite element method (FEM)  Reynolds number (Re)  permittivity  operation conditions 
學科別分類
中文摘要 本研究中乃利用數值方式,建構模型,並模擬出利用微波輻射做為加熱源,用來驅使甲醇蒸氣重組與甲醇分解的吸熱反應。在本發展的模型中,其牽涉到之統御方程式包含了連續、動量方程式、能量方程式、物質成份方程式及麥斯威爾方程式,此外反應物與觸媒床之雙重吸收現象亦考慮在其中。而在此研究中,用來描述物理現象之數值求解程式為COMSOL Multiphysics 4.0a版本,其所用之數值求解方法為有限元素法。本研究主要可區分為兩部分,第一部分乃為建構整個微波加熱器與化學反應器,第二部分則為特定參數之探討,即對流熱傳係數與雷諾數。
在第一部分,根據實驗設備建構出與實驗裝置相同之物理模型,並由實驗結果,分別在非多孔隙區域與多孔隙區域,測試出一組相對介電係數,用來描述微波在反應物與觸媒床內之加熱過程,此介電係數乃由介電常數與介電損失因子所組成,當介電係數於非多孔隙區域為(10 + 0.05i),多孔隙區域為(10 + 1i)時,其較符合實驗結果。在微波輻射下,變動在非多孔隙區域的介電損失因子,對產氫具相當大的影響,亦即在進行甲醇蒸氣重組反應時,預熱反應物是個重要的角色。在第二部分,微波加熱過程中溫度的分佈對產氫具有重要的影響,因此在此將關注於微波加熱下,變動反應管熱散失與雷諾數的情形。關於反應管熱散失,愈大的熱散失,相對的其甲醇轉化率與氫氣產產率都會下降;而模擬結果也顯示,在相同的功率輸出下,高雷諾數進入反應管的氣體量雖較大,但其產出氫氣的量沒比低雷諾數要好,由於其甲醇轉化率及氫氣產率比較差,並經由結果,可找出在雷諾數約為100~200間有較佳的操作條件。
英文摘要 Microwave irradiation is used as the heating source to trigger the endothermic reactions of methanol steam reforming (MSR) and methanol decomposition (MD) which is modeled and simulated numerically in this study. In this developed model, the governing equations include the continuity, momentum, energy, species and Maxwell’s equations. Meanwhile, the double absorption of microwaves by both the reactants and the catalyst bed in the reactor is also taken into account. The numerical solutions use Comsol Multiphysics 4.0a and solved by the finite element method (FEM) to describe the physical phenomena. This study can be separated by two parts. One is constructed the microwave heater and the chemical reactor. The other is specific parameters discussion, that is, convective heat transfer coefficient and Reynolds number (Re).
In the first part, we construct a physical model according to the experimental setup. From the experimental results, the heating processes of microwaves on the reactants and the catalyst bed are described by establishing two sets of complex relative permittivity in the non-porous and porous regions. The complex relative permittivity consists of a dielectric constant and a dielectric loss factor. When the values of complex relative permittivity in the non-porous and porous zones are 10+0.05i and 10+1i, respectively, the predictions are in good agreement with the experimental results. With microwave irradiation, it is found that varying dielectric loss factor in the nonporous region has a significant impact on hydrogen production, revealing that the preheating of the reactants plays a prominent role in determining the performance of MSR. In the second part, we know that the temperature distribution of microwave heating process has a significant effect on the mechanism of hydrogen production. Hence, we focus on the variations of reactor heat loss and Re under microwave heating. With regard to the reactor heat loss, a higher heat transfer coefficient causes the decrease in methanol conversion and hydrogen yield. Although a higher Re means more reactant gas into the reactor, the product of hydrogen is not better than lower Re owing to the lower methanol conversion and hydrogen yield under the some power. From the results, it can be found the better operating conditions for the Re are in the range of 100-200.
論文目次 摘要 I
目錄 V
表目錄 VIII
圖目錄 IX
符號說明 (nomenclature) XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 4
1.3 研究流程圖 6
第二章 文獻回顧 7
2.1 MSR反應動力機構 7
2.2 微波加熱(microwave heating) 12
2.3 現有之微波加熱結合化學反應之研究 18
第三章 研究方法 20
3.1 物理問題及模式說明 20
3.2 模型問題之基本假設 20
3.3 統御方程式(Governing Equations) 21
3.3.1 非多孔隙區域之統御方程式(Governing Equations of Non-porous Region) 21
3.3.2 多孔隙區域之統御方程式(Governing Equations of Porous Region) 22
3.4 化學反應項(Chemical reaction terms) 25
3.4.1 MSR反應機構 25
3.4.2 化學反應速率 25
3.5 微波加熱項(Microwave heating term) 26
3.6 數值方法(Numerical method) 26
3.6.1 離散(Discretization) 27
3.6.2 SPOOLES求解 27
3.6.3 GMRES求解 28
3.6.4 阻尼常數(Damping constant) 28
3.6.5 收斂標準 29
第四章 結果與討論 30
4.1 MSR反應特性分析 30
4.1.1 格點獨立性驗證 33
4.1.2 邊界條件設定 36
4.2 MSR反應於微波加熱環境下之模型建立 37
4.2.1不同的損失因子效應與實驗做驗證 37
4.2.2微波加熱效應對MSR反應機構的影響 43
4.3於微波加熱環境下變化對流熱傳係數對MSR反應機構的影響 61
4.4於微波加熱環境下變化入口雷諾數對MSR反應機構的影響 68
第五章 結論與未來工作 82
5.1 結論 82
5.2 未來工作 83
參考文獻 85
附錄A 92
自述 94
參考文獻 1. Acierno, D., Barba, A.A., d’Amore, M., “Heat transfer phenomena during processing materials with microwave energy,” Heat and Mass Transfer, Vol.40, pp.413-420, 2004.
2. Agarwal, V., Patel, S., Pant, K.K., “H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: transient deactivation kinetics modeling,” Applied Catalysis A: General, Vol.279, pp.155-164, 2005.
3. Amphlett, J., Creber, K., Davis, J., Mann, R., Peppley, B., Stokes, D., “Hydrogen production electrolyte fuel cells,” International Journal of Hydrogen Energy, Vol.19, pp.131-137, 1994.
4. Aparna, K., Basak, T., Balakrishnan, A.R., “Role of metallic and composite (ceramic-metallic) supports on microwave heating of porous dielectrics,” International Journal of Heat and Mass Transfer, Vol.50, pp.3072-3089, 2007.
5. Ayappa, K.G., Davis, H.T., Davis, E.A., Gordon, J., “Two-Dimensional Finite Element Analysis of Microwave Heating,” AIChE Journal, Vol.38, pp.1577-1592, 1992.
6. Basak, T., “Role of lateral and radial irradiations on efficient microwave processing of food cylinders,” Chemical Engineering Science, Vol.62, pp.3185-3196, 2007.
7. Bonnet, C., Estel, L., Ledoux, A., Mazari, B., Louis, A., “Study of the thermal repartition in a microwave reactor: application to the nitrobenzene hydrogenation,” Chemical Engineering and Processing, Vol.43, pp.1435-1440, 2004.
8. Campanone, L.A., Zaritzky, N.E., “Mathematical analysis of microwave heating process,” Journal of Food Engineering, Vol.69, pp.359-368, 2005.
9. Chaum, W., Rattanadecho, P., Pakdee, W., “Experimental analysis of microwave heating of dielectric materials using a rectangular wave guide (MODE:TE10) (case study: Water layer and saturated porous medium),” Experimental Thermal and Fluid Science, Vol.33, pp.472-481, 2009.
10. Chen, W.H., Chiu, T.W., “Hysteresis and reaction characterization of methane catalytic partial oxidation on rhodium catalyst,” Journal of Power Sources, Vol.194, pp.467-477, 2009.
11. Chen, W.H., Lin, B.H., “Effect of microwave double absorption on hydrogen generation from methanol steam reforming,” International Journal of Hydrogen Energy, Vol.35, pp.1987-1997, 2010.
12. Chen, W.H., Jheng, J.G., Yu, A.B., “Hydrogen generation from a catalytic water gas shift reaction under microwave irradiation,” International Journal of Hydrogen Energy, Vol.33, pp.4789-4797, 2008.
13. Chen, W.H., Syu, Y.J., “ Thermal behavior and hydrogen production of methanol steam reforming and autothermal reforming with spiral preheating,” International Journal of Hydrogen Energy, Vol.36, pp.3397-3408, 2011.
14. Chein, R.Y., Chen, L.C., Chen, Y.C., Chung, J.N., “Heat transfer effects on the methanol-steam reforming with partially filled catalyst layer,” International Journal of Hydrogen Energy, Vol.34, pp.5398-5408, 2009.
15. Cherbanski, R., Molga, E., “Intensification of desorption processes by use of microwaves—An overview of possible applications and industrial perspectin,” Chemical Engineering and Processing, Vol.48, pp.48-58, 2009.
16. Claridge, J.B., Green, M.L.H., Tsang, S.C., Andrew, P.E.Y., Alexander, T. A., Battle, P.D., “A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas,” Catalysis Letters, Vol.22, pp.299-305, 1993.
17. COMSOL Multiphysics 4.0a User Guide and Modeling Guide.
18. Dagle, R.A., Platon, A., Palo, D.R., Datye, A.K., Vohs, J.M., Wang, Y., “PdZnAl catalysts for the reactions of water-gas-shift, methanol steam reforming, and reverse-water-gas-shift,” Applied Catalysis A: General, Vol.342, pp.63-68, 2008.
19. Fu, C.H., Wu, C.S., “Mathematical simulation of hydrogen production via methanol steam reforming using double-jacketed membrane reactor,” International Journal of Hydrogen Energy, Vol.32, pp.4830-4839, 2007.
20. Fukahori, S., Koga, H., Kitaoka, T., Nakamura, M., Warishi, H., “Steam reforming behavior of methanol using paper-structured catalysts: Experimental and computational fluid dynamic analysis,” International Journal of Hydrogen Energy, Vol.33, pp.1661-1670, 2008.
21. Geedipalli, S.S.R., Rakesh, V., Datta, A.K., “Modeling the heating uniformity contributed by a rotating turntable in microwave ovens,” Journal of Food Engineering, Vol.82, pp.359-368, 2007.
22. Geedipalli, S.S.R., Datta, A.K., Rakesh, V., “Heat transfer in a combination microwave-jet impingment oven,” Food and Bioproducts processing, Vol.86, pp.53-63, 2008.
23. Ho, C.K., Webb, S.W., “Gas Transport in Porous Media," Springer, Netherland, 2006.
24. Hoogers, G., Fuel cell technology handbook. FL: CRC Press; 2003.
25. Huang, G., Liaw, B.J., Jhang, C.J., Chen, Y.Z., “Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts,” Applied Catalysis A: General, Vol.358, pp.7-12, 2009.
26. Incropera, F.P., DeWitt, D.P., “Fundamentals of Heat and Mass Transfer. Fifth Edition," Wiley, New York, 2002.
27. Jeong, H., Kim, K.I., Kim, T.H., Ko, C.H., Park, H.C., Song, I.K., “Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst,” Journal of Power Sources, Vol.159, pp.1296-1299, 2006.
28. Jones, D.A., Lelyveld, T.P., Mavrofidis, S.D., Kingman, S.W., Miles, N.J., “Microwave heating applications in environmental engineering – a review,” Resources Conservation and Recycling, Vol.34, pp.75-90, 2002.
29. Kambiz, V., “Handbook of Porous Media, Second Edition," Marcel Dekker, New York, 2005.
30. Knoerzer, K., Regier, M., Schubert, H., “A computational model for calculating temperature distributions in microwave food applications,” Innovative Food Science & Emerging Technologies, Vol.9, pp.374-384, 2008.
31. Lanza, R., Jara, S.G., Canu, P., “Partial oxidation of methane over supported ruthenium catalysts,” Applied Catalysis A, Vol.325, pp.57-67, 2007.
32. Minchener, A.J., “Coal gasification for advanced power generation,” Fuels, Vol.84, pp.2222-2235, 2005.
33. Mohan, D., Pittman, C.U., Jr., Steele, P.H., “Pyrolysis of wood / biomass for bio-oil: a critical review,” Energy and Fuels, Vol.20, pp.848-889, 2006.
34. Oliveria, M.E.C., Franca, A.S., “Microwave heating of foodstuffs,” Journal of Food Engineering, Vol.53, pp.347-359, 2002.
35. Ouzounidou, M., Ipsakis, D., Voutetakis, S., Papadopoulou, S., Seferlis, P., “A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: Experiment and simulation studies,” Energy, Vol.34, pp.1733-1743, 2009.
36. Pandit, R.B., Prasad, S., “Finite element analysis of microwave heating of potato-transient temperature profiles,” Journal of Food Engineering, Vol.60, pp.193-202, 2003.
37. Perry, W.L., Datye, A.K., Prinja, A.K., Brown, L.F., Katz, J.D., “Microwave heating of endothermic catalytic reactions: Reforming of methanol,” AIChE Journal, Vol.48, pp.820-831, 2002.
38. Ratanadecho, P., “The simulation of microwave heating of wood using a rectangular wave guide: Influence of frequency and sample size,” Chemical Engineering Science, Vol.61, pp.4798-4811, 2006.
39. Ratanadecho, P., Aoki, K., Akahori, M., “A numerical and experimental investigation of the modeling of microwave heating for liquid layers using a rectangular wave guide (effects of natural convection and dielectric properties),” Applied Mathematical Modeling, Vol.26, pp.449-472, 2002.
40. Saltiel, C., Datta, A.K., “Heat and Mass Transfer in Microwave Processing,” Advanced in Heat Transfer, Vol.33, pp.1-94, 1999.
41. Samanta, S.K., Basak, T., “Efficient microwave processing of oil-water emulsion cylinders with lateral and radial irradiations,” Food Research International, Vol.42, pp.1337-1350, 2009.
42. Smolinka, T., “Fuels-hydrogen production | water electrolysis,” Encyclopedia of Electrochemical Power Sources, pp.394-413, 2009.
43. Suh, J.S., Lee, M.T., Greif, R., Grigoropoulos, C.P., “Transport phenomena in a steam-methanol reforming microreactor with internal heating,” International Journal of Hydrogen Energy, Vol.34, pp.314-322, 2009.
44. Tamaka, Y., Kikuchi, R., Takeguchi, T., Eguchi, K., “Steam reforming of dimethyl ether over composite catalysts of γ-Al2O3 and Cu-based spinel,” Applied Catalysis B: Environment, Vol.57, pp.211-222, 2005.
45. Tanaka, F., Uchino, T., Hamanaka, D., Atungulu, G.G., Hung, Y.C., “Dielectric properties of mirin in the microwave frequency range,” Journal of Food Engineering, Vol.89, pp.435-440, 2008.
46. Thomas, L.C., “Heat transfer, " Prentice-Hall International, New Jersey, 1992.
47. Tinoco, R.R., Mansilla, C., Bouallou, C., “Competitiveness of hydrogen production by High Temperature Electrolysis: Impact of the heat source and identification of key parameters to achieve low production costs,” Energy Conversion and Management, Vol.51, pp.2623-2634, 2010.
48. Udani, P.P.C., Gunawardana, P.V.D.S., Lee, H.Y., Kim, D.H., “Steam reforming and oxidative steam reforming of methanol over CuO-CeO2 catalysts,” International Journal of Hydrogen Energy, Vol.34, pp.7648-7655, 2009.
49. Verboven, P., Datta, A.K., Anh, N.T., Scheerlinck, N., Nicolai, B.M., “Computation of airflow effects on heat and mass transfer in a microwave oven,” Journal of Food Engineering, Vol.59, pp.181-190, 2003.
50. Yakovlev, V.V., “Efficient electromagnetic models for system and processes of microwave heating,” Heating by Internal Sources, pp.285-292, 2001.
51. Yang, H.W., Gunasekaran, S., “Comparison of temperature distribution in model food cylinders based on Maxwell’s equations and Lambert’s law during pulsed microwave heating,” Journal of Food Engineering, Vol.64, pp.445-453, 2004.
52. Zhu, J., Kuznetsov, A.V., Sandeep, K.P., “Mathematical modeling of continuous flow microwave heating liquids (effects of dielectric properties and design parameters),” International Journal of Thermal Sciences, Vol.46, pp.328-341, 2007.
53. 曲新生,陳發林, “氫能技術,” 五南圖書公司,2006年4月。
54. 石詔明, “電磁學,” 全威圖書,2007年8月。
55. 林天送, “巧克力糖怎麼熔糊了 微波爐的發明,” 行政院國家科學委員會,http://web1.nsc.gov.tw/mp.aspx,2009年3月。
56. 李長綱, “電磁學與電磁波的理論及應用 = Theory and application of electromagnetic fields and waves,” 鼎茂圖書,2009年3月。
57. 程雋, “電磁波理論,” 文笙書局,2009年7月。
58. 陳維新, “空氣污染與控制,” 高立圖書有限公司,2009年9月。
59. 陳維新, “生質物與生質能,” 高立圖書有限公司,2010年7月。
60. 陳維新, “能源概論,” 高立圖書有限公司,2011年1月。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-07-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-07-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw