進階搜尋


下載電子全文  
系統識別號 U0026-1206201914155600
論文名稱(中文) 研究探討水分子如何用來穩定金屬環五唑水合物這類之高能量密度材料
論文名稱(英文) Dual functions of water in stabilizing metal-pentazolate hydrates [M(N5)2(H2O)4]·4H2O (M = Mn, Fe, Co, and Zn) high-energy-density materials
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 107
學期 2
出版年 108
研究生(中文) 羅正華
研究生(英文) Jheng-Hua Luo
學號 L36064197
學位類別 碩士
語文別 中文
論文頁數 36頁
口試委員 指導教授-鄭沐政
口試委員-周鶴軒
口試委員-盧臆中
中文關鍵字 環五唑陰離子  高能量密度材料  金屬環五唑水合物  配位水  氫鍵水 
英文關鍵字 cyclo-N5  HEDMs  [M(N5)2(H2O)4]·4H2O  c-H2O  h-H2O 
學科別分類
中文摘要 環五唑陰離子 (N5-) 這類之高能量密度材料 (HEDMs),在爆炸時釋放之能量較傳統型 HEDMs 來的更多,且對環境的影響更小,因為環五唑陰離子爆炸完就只有大量的能量以及氮氣的生成,並不會對環境造成太大影響,因此環五唑化合物是很值得研究的 HEDMs。然而,要合成含有環五唑的 HEDMs具有一定的難度,因為環五唑陰離子的穩定性相當不好,在室溫下易分解、爆炸,但是在 2017 年,有學者成功合成出穩定且含有環五唑的金屬水合物。因此在本篇論文中,利用量子化學計算的方式來解釋這些金屬環五唑水合物 ([M(N5)2(H2O)4]·4H2O (M = Mn, Fe, Co, and Zn) 為何在室溫中具有一定的穩定性。
本篇論文的研究結果說明金屬環五唑水合物的穩定度是由其中兩種不同類型的水:配位水 (c-H2O)和氫鍵水 (h-H2O) 所形成。這兩種水用不同的形式來穩定具有高反應性的金屬環五唑中心 (M(N5)2) ,其中配位水與金屬中心鍵結用來減少金屬中心和環五唑陰離子的相互作用力,導致環五唑分子受到金屬中心的影響變小,使其反應性降低,造成較高的動力學能障(Eas)使之較難以分解;相反的,氫鍵水則利用它和環五唑陰離子的靜電作用力來抑制環五唑的分解。
這兩種水對於金屬環五唑中心的穩定作用是類似的,也就是說不管移除配位水或是氫鍵水都能使金屬環五唑中心的反應性提高,但是由於從金屬環五唑水合物中移除氫鍵水所需的能量較低,且移除後動力學障礙也跟移除配位水一樣大幅下降,因此我們推測氫鍵水在這種金屬環五唑水合物是相當於“安全裝置”的用途,這樣可以防止金屬環五唑水合物在動力學上變得不穩定。
因此將來要設計含有環五唑陰離子的高能量密度材料時,會參考類似水的小分子,如 NH3 和 H2S,它們可以和金屬中心有比較好的鍵結,使金屬中心和環五唑陰離子的相互作用力減少更多,又可以對環五唑陰離子有靜電作用力,來達到跟水分子一樣具有兩種不同類型的形式來穩定金屬環五唑中心。
英文摘要 High-energy-density materials (HEDMs) containing the cyclopentazole anion (cyclo-N5) are highly desirable due to the release of more energy and being environmentally more friendly than conventional HEDMs. However, the synthesis of stable cyclo-N5-containing HEDMs has been a challenge. In this study, quantum mechanical calculations were employed to elucidate the stability of [M(N5)2(H2O)4]·4H2O (M = Mn, Fe, Co, and Zn), one of the few recently reported cyclo-N5-contained HEDMs, under ambient conditions.
The results from our study indicate that the stability is due to the presence of two types of water (coordinated H2O (c-H2O) and hydrogen-bonded H2O (h-H2O)). Each type uses a unique mode to stabilize the highly reactive M(N5)2 cores. c-H2O binds with M to reduce the M ↔ cyclo-N5 interaction, leading to a less activated cyclo-N5 and higher kinetic barriers (Eas) for its decomposition. In contrast, h-H2O takes advantage of its permanent electrostatic interactions with cyclo-N5 to inhibit the decomposition.
The stabilizing effects of the two types of water on M(N5)2 are similar. On the basis of the lower energy cost to remove h-H2O from the materials and the subsequent large decrease in the Ea due to this removal, we propose that h-H2O acts as a “safety device” that prevents the materials from becoming kinetically unstable.
For future design of cyclo-N5-contained HEDMs, we proposed the use of various molecular building blocks, such as NH3, H2S, which can tightly bind to M to reduce the M ↔ cyclo-N5 interaction and impose permanent electrostatic interactions with cyclo-N5 to provide the similar dual functions of H2O to suppress cyclo-N5 decomposition.
論文目次 目錄
第一章 緒論 1
第一節、高能量密度材料 1
第二節、富氮化合物 2
第二章 研究動機 3
第三章 計算方法與分子模型 4
第一節、計算方法 4
第二節、分子模型 5
第四章 結果與討論 7
第一節、環五唑在材料中之解離情形 7
第二節、配位水 (c-H2O) 對環五唑解離的影響 12
第三節、氫鍵水 (h-H2O) 對環五唑解離的影響 15
第四節、結合氫鍵水以及配位水對環五唑解離的影響 22
第五節、與實驗結果做比較 25
第六節、未來展望 27
第五章 結論 28
參考文獻 29

參考文獻 1.Glukhovtsev, M. N.; Jiao, H. J.; Schleyer, P. V., Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms? Inorg. Chem. 1996, 35, 7124-7133.
2.Christe, K. O., Recent Advances in the Chemistry of N5+, N5- and High-Oxygen Compounds. Prop., Explos., Pyrotech. 2007, 32, 194-204.
3.Singh, R. P.; Verma, R. D.; Meshri, D. T.; Shreeve, J. M., Energetic Nitrogen-Rich Salts and Ionic Liquids. Angew. Chem. Int. Ed. 2006, 45, 3584-3601.
4.Nguyen, M. T., Polynitrogen Compounds 1. Structure and Stability of N4 and N5 Systems. Coord. Chem. Rev. 2003, 244, 93-113.
5.Zumdahl, S. S., Chemistry, 8th ed.; Cole Cengage Learning: New York, 2010.
6.Muller, P.; Schroder, B.; Parkinson, J. A.; Kratochwil, N. A.; Coxall, R. A.; Parkin, A.; Parsons, S.; Sadler, P. J., Nucleotide Cross-Linking Induced by Photoreactions of Platinum(IV)-Azide Complexes. Angew. Chem. Int. Ed. 2003, 42, 335-339.
7.Haiges, R.; Boatz, J. A.; Bau, R.; Schneider, S.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Polyazide Chemistry: The First Binary Group 6 Azides, Mo(N3)6, W(N3)6, [Mo(N3)7]-, and [W(N3)7]-, and the [NW(N3)4]- and [NMo(N3)4]- Ions. Angew. Chem. Int. Ed. 2005, 44, 1860-1865.
8.Haiges, R.; Boatz, J. A.; Schroer, T.; Yousufuddin, M.; Christe, K. O., Experimental Evidence for Linear Metal-Azido Coordination: The Binary Group 5 Azides [Nb(N3)5], [Ta(N3)5], [Nb(N3)6](-), and [Ta(N3)6]- and 1 : 1 Acetonitrile Adducts [Nb(N3)5(CH3CN)] and [Ta(N3)5(CH3CN)]. Angew. Chem. Int. Ed. 2006, 45, 4830-4835.
9.Villinger, A.; Schulz, A., Binary Bismuth(III) Azides: Bi(N3)3, [Bi(N3)4]-, and [Bi(N3)6]3-. Angew. Chem. Int. Ed. 2010, 49, 8017-8020.
10.Muller, T. G.; Karau, F.; Schnick, W.; Kraus, F., A New Route to Metal Azides. Angew. Chem. Int. Ed. 2014, 53, 13695-13697.
11.Muller, T. G.; Mogk, J.; Conrad, M.; Kraus, F., Octaammine EuII and YbII Azides and Their Thermal Decompositions to the Nitrides. Eur. J. Inorg. Chem. 2016, 4162-4169.
12.Rosenstengel, K.; Schulz, A.; Niehaus, O.; Janka, O.; Pottgen, R.; Villinger, A., Binary Polyazides of Cerium and Gadolinium. Eur. J. Inorg. Chem. 2018, 778-790.
13.Christe, K. O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A., N5+: A Novel Homoleptic Polynitrogen Ion as a High Energy Density Material. Angew. Chem. Int. Ed. 1999, 38, 2004-2009.
14.Vij, A.; Pavlovich, J. G.; Wilson, W. W.; Vij, V.; Christe, K. O., Experimental Detection of the Pentaazacyclopentadienide (Pentazolate) Anion, Cyclo-N5-. Angew. Chem. Int. Ed. 2002, 41, 3051-3054.
15.Ostmark, H.; Wallin, S.; Brinck, T.; Carlqvist, P.; Claridge, R.; Hedlund, E.; Yudina, L., Detection of Pentazolate Anion (Cyclo-N5-) from Laser Ionization and Decomposition of Solid p-dimethylaminophenylpentazole. Chem. Phys. Lett. 2003, 379, 539-546.
16.Bazanov, B.; Geiger, U.; Carmieli, R.; Grinstein, D.; Welner, S.; Haas, Y., Detection of Cyclo-N5- in THF Solution. Angew. Chem. Int. Ed. 2016, 55, 13233-13235.
17.Zhang, C.; Sun, C. G.; Hu, B. C.; Yu, C. M.; Lu, M., Synthesis and Characterization of the Pentazolate Anion Cyclo-N5- in (N5)6(H3O)3(NH4)4Cl. Science 2017, 355, 374-376.
18.Xu, Y. G.; Wang, Q.; Shen, C.; Lin, Q. H.; Wang, P. C.; Lu, M., A Series of Energetic Metal Pentazolate Hydrates. Nature 2017, 549, 78-81.
19.Xu, Y. G.; Wang, P. C.; Lin, Q. H.; Lu, M., A Carbon-Free Inorganic-Metal Complex Consisting of an All-Nitrogen Pentazole Anion, a Zn(II) Cation and H2O. Dalton Trans. 2017, 46, 14088-14093.
20.W., Z.; K., W.; J., L.; Z., L.; S., S.; S., H.; Y., L.; F., N.; Q., Z., Stabilization of the Pentazolate Anion in a Zeolitic Architecture with Na20N60 and Na24N60 Nanocages. Angew. Chem. Int. Ed. 2018, 57, 2592-2595.
21.Xu, Y.; Lin, Q.; Wang, P.; Lu, M., Stabilization of the Pentazolate Anion in Three Anhydrous and Metal-Free Energetic Salts. Chem. Asian J. 2018, 13, 924-928.
22.Sun, C.; Zhang, C.; Jiang, C.; Yang, C.; Du, Y.; Zhao, Y.; Hu, B.; Zheng, Z.; Christe, K. O., Synthesis of AgN5 and Its Extended 3D Energetic Framework. Nat. Commun. 2018, 9, 1269.
23.Zhang, C.; Yang, C.; Hu, B. C.; Yu, C. M.; Zheng, Z. S.; Sun, C. G., A Symmetric Co(N5)2(H2O)4⋅4H2O High-Nitrogen Compound Formed by Cobalt(II) Cation Trapping of a Cyclo-N5- Anion. Angew. Chem. Int. Ed. 2017, 56, 4512-4514.
24.Lein, M.; Frunzke, J.; Timoshkin, A.; Frenking, G., Iron Bispentazole Fe(η5-N5)2, a Theoretically Predicted High-Energy Compound: Structure, Bonding Analysis, Metal-Ligand Bond Strength and a Comparison with the Isoelectronic Ferrocene. Chem. Eur. J. 2001, 7, 4155-4163.
25.Burke, L. A.; Butler, R. N.; Stephens, J. C., Theoretical Characterization of Pentazole Anion with Metal Counter Ions. Calculated and Experimental 15N Shifts of Aryldiazonium, -Azide and -Pentazole Systems. J. Chem. Soc., Perkin Trans. 2 2001, 1679-1684.
26.Frison, G.; Mathey, F.; Sevin, A., Electronegativity Versus Lone Pair Shape: A Comparative Study of Phosphaferrocenes and Azaferrocenes. J. Phys. Chem. A 2002, 106, 5653-5659.
27.Zhao, J. F.; Li, N.; Li, Q. S., A Kinetic Stability Study of MN5 (M = Li, Na, K, and Rb). Theor. Chem. Acc. 2003, 110, 10-18.
28.Straka, M.; Pyykko, P., One Metal and Forty Nitrogens. Ab Initio Predictions for Possible New High-Energy Pentazolides. Inorg. Chem. 2003, 42, 8241-8249.
29.Malar, E. J. P., Do Penta- and Decaphospha Analogues of Lithocene Anion and Beryllocene Exist? Analysis of Stability, Structure, and Bonding by Hybrid Density Functional Study. Inorg. Chem. 2003, 42, 3873-3883.
30.Tsipis, A. C.; Chaviara, A. T., Structure, Energetics, and Bonding of First Row Transition Metal Pentazolato Complexes: A DFT Study. Inorg. Chem. 2004, 43, 1273-1286.
31.Zhang, X. L.; Yang, J. Q.; Lu, M.; Gong, X. D., Theoretical Studies on Stability and Pyrolysis Mechanism of Salts Formed by N5- and Metallic Cations Na+, Fe2+ and Ni2+. Struct. Chem. 2015, 26, 785-792.
32.Choi, C.; Yoo, H. W.; Goh, E. M.; Cho, S. G.; Jung, Y., Ti(N5)4 as a Potential Nitrogen-Rich Stable High-Energy. Density Material. J. Phys. Chem. A 2016, 120, 4249-4255.
33.Zhang, X. L.; Yang, J. Q.; Lu, M.; Gong, X. D., Structure, Stability and Intramolecular Interaction of M(N5)2 (M = Mg, Ca, Sr and Ba) : A Theoretical Study. Rsc Adv. 2015, 5, 21823-21830.
34.Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
35.Blochl, P. E., Projector Augmented-Wave Method. Phys. Rev. B. 1994, 50, 17953-17979.
36.Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B. 1999, 59, 1758-1775.
37.Kresse, G.; Furthmuller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comp. Mater. Sci. 1996, 6, 15-50.
38.Kresse, G.; Furthmuller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B. 1996, 54, 11169-11186.
39.Kresse, G.; Hafner, J., Abinitio Molecular-Dynamics for Liquid-Metals. Phys. Rev. B. 1993, 47, 558-561.
40.Kresse, G.; Hafner, J., Ab-Initio Molecular-Dynamics Simulation of the Liquid-Metal Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B. 1994, 49, 14251-14269.
41.Becke, A. D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. Phys. Rev. A. 1988, 38, 3098-3100.
42.Becke, A. D., Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652.
43.Lee, C. T.; Yang, W. T.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B. 1988, 37, 785-789.
44.Henkelman, G.; Uberuaga, B. P.; Jonsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 9901-9904.
45.Xiao, P. H.; Sheppard, D.; Rogal, J.; Henkelman, G., Solid-State Dimer Method for Calculating Solid-Solid Phase Transitions. J. Chem. Phys. 2014, 140, 174104.
46.Kaestner, J.; Sherwood, P., Superlinearly Converging Dimer Method for Transition State Search. J. Chem. Phys. 2008, 128, 014106.
47.Heyden, A.; Bell, A. T.; Keil, F. J., Efficient Methods for Finding Transition States in Chemical Reactions: Comparison of Improved Dimer Method and Partitioned Rational Function Optimization Method. J. Chem. Phys. 2005, 123, 224101.
48.Henkelman, G.; Jonsson, H., A Dimer Method for Finding Saddle Points on High Dimensional Potential Surfaces Using Only First Derivatives. J. Chem. Phys. 1999, 111, 7010-7022.
49.Carlqvist, P.; Ostmark, H.; Brinck, T., The Stability of Arylpentazoles. J. Phys. Chem. A 2004, 108, 7463-7467.
50.Benin, V.; Kaszynski, P.; Radziszewski, J. G., Arylpentazoles Revisited: Experimental and Theoretical Studies of 4-Hydroxyphenylpentazole and 4-Oxophenylpentazole Anion. J. Org. Chem. 2002, 67, 1354-1358.
51.Schweinfurth, D.; Sommer, M. G.; Atanasov, M.; Demeshko, S.; Hohloch, S.; Meyer, F.; Neese, F.; Sarkar, B., The Ligand Field of the Azido Ligand: Insights into Bonding Parameters and Magnetic Anisotropy in a Co(II)-Azido Complex. J. Am. Chem. Soc. 2015, 137, 1993-2005.
52.Mackay, F. S.; Woods, J. A.; Heringova, P.; Kasparkova, J.; Pizarro, A. M.; Moggach, S. A.; Parsons, S.; Brabec, V.; Sadler, P. J., A Potent Cytotoxic Photoactivated Platinum Complex. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 20743-20748.
53.Bresien, J.; Ott, H.; Rosenstengel, K.; Schulz, A.; Thiele, P.; Villinger, A., Binary Polyazides of Zinc. Eur. J. Inorg. Chem. 2016, 36, 5594-5609.
54.Butler, R. N.; Collier, S.; Fleming, A. F. M., Pentazoles: Proton and Carbon-13 NMR Spectra of Some 1-Arylpentazoles: Kinetics and Mechanism of Degradation of the Arylpentazole System. J. Chem. Soc., Perkin Trans. 2 1996, 801-803.
55.Ugi, I.; Huisgen, R., Pentazole, II. Die Zerfallsgeschwindigkeit Der Aryl-Pentazole. Chem. Ber. 1958, 91, 531-537.
56.Albright, T. A.; Burdett, J. K.; Whangbo, M.-H., Orbital Interactions in Chemistry; Wiley: New York, 1985.
57.Khaliullin, R. Z.; Bell, A. T.; Head-Gordon, M., Analysis of Charge Transfer Effects in Molecular Complexes Based on Absolutely Localized Molecular Orbitals. J. Chem. Phys. 2008, 128, 184112.
58.Khaliullin, R. Z.; Cobar, E. A.; Lochan, R. C.; Bell, A. T.; Head-Gordon, M., Unravelling the Origin of Intermolecular Interactions Using Absolutely Localized Molecular Orbitals. J. Phys. Chem. A 2007, 111, 8753-8765.
59.Horn, P. R.; Sundstrom, E. J.; Baker, T. A.; Head-Gordon, M., Unrestricted Absolutely Localized Molecular Orbitals for Energy Decomposition Analysis: Theory and Applications to Intermolecular Interactions Involving Radicals. J. Chem. Phys. 2013, 138, 134119.
60.Horn, P. R.; Mao, Y. Z.; Head-Gordon, M., Defining the Contributions of Permanent Electrostatics, Pauli Repulsion, and Dispersion in Density Functional Theory Calculations of Intermolecular Interaction Energies. J. Chem. Phys. 2016, 144, 114107.
61.Shao, Y. H., et al., Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package. Mol. Phys. 2015, 113, 184-215.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-06-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-06-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw