進階搜尋


下載電子全文  
系統識別號 U0026-1206201323510100
論文名稱(中文) 熱休克蛋白九十在有絲分裂期所扮演的角色
論文名稱(英文) The Role of Heat Shock Protein 90 during Mitosis
校院名稱 成功大學
系所名稱(中) 生物資訊與訊息傳遞研究所
系所名稱(英) Insitute of Bioinformatics and Biosignal Transduction
學年度 101
學期 2
出版年 102
研究生(中文) 王紹安
研究生(英文) Shao-An Wang
電子信箱 ann_749@yahoo.com.tw
學號 z18961026
學位類別 博士
語文別 英文
論文頁數 133頁
口試委員 指導教授-洪建中
口試委員-張文昌
口試委員-呂佩融
口試委員-洪文俊
口試委員-黃暉升
口試委員-陳炳焜
中文關鍵字 熱休克蛋白九十  有絲分裂  磷酸化  穩定性 
英文關鍵字 Hsp90  Sp1  nucleolin  mitosis  stability  phosphorylation 
學科別分類
中文摘要 目前關於熱休克蛋白九十的研究大部份是針對其在細胞間期的探討,然而其在有絲分裂期仍然不是很清楚。我們先前的研究已經顯示出熱休克蛋白九十可以與Sp1有交互作用並且調控十二酯氧化酵素的轉錄活性,在此我們更進一步地發現這兩個蛋白的交互作用發生在有絲分裂期,透過熱休克蛋白九十抑制劑和降解,我們發現此交互作用會維持Sp1蛋白穩定性,也會降低JNK-1磷酸化的程度,當JNK-1被降解之後,Sp1也會透過泛素依賴蛋白酶機制而降解,這結果指出熱休克蛋白九十對於維持有絲分裂期的Sp1穩定性是重要的,這是透過JNK-1將Sp1磷酸化使其穩定並且調控下個間期的相關基因表現。除此之外,我們也發現熱休克蛋白九十乙醯化程度在有絲分裂期有著顯著的降低,這代表其更具保護活性,我們因此進一步地透過質譜分析找出有絲分裂期更多熱休克蛋白九十的交互蛋白,並且發現nucleolin是其中之一,然而在熱休克蛋白九十抑制劑存在下,nucleolin表現量會降低,我們還發現熱休克蛋白九十可以透過維持CDK1活性進而磷酸化nucelolin,在此我們的研究發現指出熱休克蛋白九十所穩定的nucleolin有助於肺癌生成,主要是在有絲分裂期間透過增加許多與腫瘤相關之mRNA的表現量。總結,我們發現熱休克蛋白九十在有絲分裂期也扮演著期保護蛋白的角色,並非只有在細胞間期才有活性。
英文摘要 Most previous studies on heat shock protein 90 (Hsp90) have focused on the involvement of Hsp90 in the interphase, whereas the role of this protein in the nucleus during mitosis remains largely unclear. Our previous study has revealed that Hsp90 can interact with Sp1 to regulate the transcriptional activity of 12(S)-lipoxygenase. Herein, we further found that the interaction between Hsp90 and Sp1 occurred during mitosis. By geldanamycin (GA) treatment and knockdown of Hsp90, we found that this interaction during mitosis was involved in the maintenance of Sp1 stability, and that the phospho-c-Jun N-terminal kinase (JNK)-1 level also decreased. As the JNK-1 was knocked down by the shRNA of JNK-1, Sp1 was degraded through an ubiquitin-dependent proteasome pathway. The results indicate that Hsp90 is important for maintaining Sp1 stability during mitosis by the JNK-1-mediated phosphorylation of Sp1 to enable division into daughter cells and to regulate the expression of related genes in the interphase. In addition, we also found that the level of the acetylated form of Hsp90 decreased dramatically during mitosis, which indicates more chaperone activity during mitosis. We further probed proteins that interacted with Hsp90 by liquid chromatography/mass spectrometry (LC/MS) and found that nucleolin was one of those interacting proteins during mitosis. The nucleolin level decreased upon geldanamycin treatment, and Hsp90 maintained the cyclin-dependent kinase 1 (CDK1) activity to phosphorylate nucleolin. Our findings indicate that nucleolin stabilized by Hsp90 contributes to the lung tumorigenesis by increasing the level of many tumor-related mRNAs during mitosis. In conclusion, Hsp90 could play an important chaperone role during mitosis, not only in interphase.
論文目次 Abstract………………………………………………….…………i
Abstract in Chinese…...………………………………….………iii
Acknowledgements…………………………………….…………v
Contents……………………………………………….………….viii
Abbreviation list………………………………………...………xv


Chapter 1: Introduction………………………………….…….…1
I. Heat shock protein 90…………………………….………1
A. Overview of Hsp90………..……………..…….……1
B. The structure and co-chaperone of Hsp90……….……..2
C. Inhibitors of Hsp90 function………..………….……..4
D. Hsp90 client proteins……….……………….……….5
II. Sp1………………………..……………………….…….8
A. Overview of Sp1………………………………….…8
B. The phosphorylation of Sp1………………...….……10
III. c-Jun N-terminal kinases (JNKs)…………….……….….11
A. Mitogen-activated protein kinases (MAPKs)……….…11
B. Overview of JNKs………………………….………12
IV. The cell cycle………………………….………….……..13
A. Cell cycle fundamentals…………………..…………..13
B. The regulation of cell cycle………………..…….……14
V. Nucleolin…………………………...………….………..16
A. Overview of nucleolin………….………….……….16
B. Regulation of mRNA stability…………………….…17
VI. Research aims……………………………….………….17

Chapter 2: Materials and methods………………….…………..19
I. Materials……………………….………..……………..19
II. Plasmids……………………….……………………….21
III. Methods……………………………….………………..21
A. Cell culture……………………….…….…………21
B. Preparation of cytosol extracts……...…………….…22
C. Western blot analysis…………………….…………22
D. Immunoprecipitation………………….……………23
E. Transfection and reporter gene assay……………...…24
F. Reverse Transcription (RT)-PCR………….…...……24
G. Immunofluorescence microscopic analysis……...……26
H. Purification of GST fusion proteins……….…………27
I. Phosphorylation assay…………...…………………27
J. Cell synchronization…….………………….………28
K. RNA interference……….……….…………………29
L. ChIP assay……………….…………..……………29
M. In-solution Tryptic Digestion…….…………….……30
N. Nano-LC-MS/MS Analysis……………...……….…30
O. In Vitro Calf Intestinal Alkaline Phosphatase (CIP) Assay……………………………………………..31
P. In Vitro CDK1 Kinase Assay……………..…………32
Q. RNA Immunoprecipitation Assay……………...….…32
R. Heat Map Plots……………………….……………32
S. Histological Analysis and Immunohistochemistry….…33
T. Fluorescence-activated Cell Sorting (FACS) Analysis....33
U. Generation of bitransgenic mice………..……………34

Chapter 3: Results…………………….……………………….…35
I. Study the effect of Hsp90 on Sp1 during the cell cycle….…35
A. The difference of Hsp90-interacting proteins between interphase and mitosis……………………….…...…35
B. Hsp90 interacts with Sp1 in the mitotic stage…………36
II. Hsp90 plays an important role on Sp1 stability during mitosis……………….…………………………………36
A. Hsp90 protects Sp1 stability by protecting it from ubiquitin-dependent degradation……….……………36
B. Hsp90 is essential for Sp1 phosphorylation by JNK-1....37
C. JNK-1 induces Sp1 stability in an Hsp90-dependent manner in the mitotic stage………….....……………38
D. Hsp90 is involved in Sp1-regulated gene expression of target genes………………………………..………40
III. Analysis of the Hsp90-interacting proteins during mitosis...40
A. Hsp90 protects nucleolin from degradation……….…..41
B. Hsp90 colocalizes with nucleolin during mitosis…...…41
IV. The role of Hsp90 on nucleolin during mitosis……………43
A. Hsp90 protects nucleolin from degradation………...…43
B. CDK1, the binding protein of Hsp90, phosphorylates nucleolin to increase its stability during mitosis…….…44
C. Hsp90 maintains the mRNA levels during mitosis through increasing nucleolin stability……………….….……47
D. Nucleolin stabilizes mitotic mRNA levels, which is related to tumorigenesis……………….……………...……48

Chapter 4: Discussion………………………………....…………50

Conclusion………………………………….…………..…………59

References……………………………………….……………..…60
Figures……………………………………………….……………77
Figure 1. Co-localization of Sp1 with Hsp90 in the mitotic period…..77
Figure 2. GA treatment or Hsp90 knockdown decreased the protein level, but not the RNA level of Sp1…………...…………79
Figure 3. GA treatment or Hsp90 knockdown induced the ubiquitination of Sp1………………….……………………..………81
Figure 4. GA treatment induced Sp1 dephosphorylation through JNK-1 inactivation………….……………………………...…83
Figure 5. JNK-1 knockdown induced Sp1 instability.…………....…85
Figure 6. GA treatment induced Sp1 instability during mitosis…...…87
Figure 7. GA treatment inhibited 12(S)-lipoxygenase and
p21WAF1/CIP1 transcriptional activities…….……….………89
Figure 8. Hsp90 is deacetylated and interacts with nucleolin in the mitotic period…………………….…….………..……91
Figure 9. Increase in protein stability of nucleolin under GA treatment and Hsp90 knockdown…………...……….……………93
Figure 10. CDK1 phosphorylates the Thr-641/707 sites of nucleolin during mitosis………………………….……..….……95
Figure 11. GA reduced CDK1 stability to increase the instability of nucleolin……………………………….……..………98
Figure 12. The Thr641/707 sites of nucleolin are involved in its protein stability during mitosis……………………...…….….100
Figure 13. CSNK2A1, PRKACA and PRKCZ kinases do not involve in the nucleolin stability……………………………..….102
Figure 14. Analysis of the novel interacting mRNAs of nucleolin in mitosis……………………………….………………103
Figure 15. The effect of GA treatment during mitosis………....……104
Figure 16. Prediction of mRNA 3’UTR of nucleolin binding…….….105
Figure 17. Networks generated by IPA associated with genes of nucleolin specific targeted……………….…………..…………106
Figure 18. Nucleolin is involved in the mRNA stability in mitosis…..107
Figure 19. Levels of Hsp90, nucleolin, and interactingmRNAsin lung primary and cancer cells………………...….…………109

Tables…………………………….………………………………107
Table 1. Hsp90-interacting proteins in interphasic and mitotic cells.…111
Table 2. Characteristic of novel nucleolin binding mRNAs………….113

Appendixes…………………….…………………………...……114

Curriculum vitae………………………….………….…………132
參考文獻 Abdelmohsen, K., and Gorospe, M. (2012). RNA-binding protein nucleolin in disease. RNA biology 9, 799-808.
Abdelmohsen, K., Lal, A., Kim, H.H., and Gorospe, M. (2007). Posttranscriptional orchestration of an anti-apoptotic program by HuR. Cell Cycle 6, 1288-1292.
Abdelrahim, M., Smith, R., 3rd, Burghardt, R., and Safe, S. (2004). Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells. Cancer research 64, 6740-6749.
Akalin, A., Elmore, L.W., Forsythe, H.L., Amaker, B.A., McCollum, E.D., Nelson, P.S., Ware, J.L., and Holt, S.E. (2001). A novel mechanism for chaperone-mediated telomerase regulation during prostate cancer progression. Cancer research 61, 4791-4796.
An, W.G., Schnur, R.C., Neckers, L., and Blagosklonny, M.V. (1997). Depletion of p185erbB2, Raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity. Cancer chemotherapy and pharmacology 40, 60-64.
Angelov, D., Bondarenko, V.A., Almagro, S., Menoni, H., Mongelard, F., Hans, F., Mietton, F., Studitsky, V.M., Hamiche, A., Dimitrov, S., et al. (2006). Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. The EMBO journal 25, 1669-1679.
Armstrong, S.A., Barry, D.A., Leggett, R.W., and Mueller, C.R. (1997). Casein kinase II-mediated phosphorylation of the C terminus of Sp1 decreases its DNA binding activity. The Journal of biological chemistry 272, 13489-13495.
Barabino, S.M., and Keller, W. (1999). Last but not least: regulated poly(A) tail formation. Cell 99, 9-11.
Black, A.R., Black, J.D., and Azizkhan-Clifford, J. (2001). Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. Journal of cellular physiology 188, 143-160.
Blancafort, P., Magnenat, L., and Barbas, C.F., 3rd (2003). Scanning the human genome with combinatorial transcription factor libraries. Nature biotechnology 21, 269-274.
Borkovich, K.A., Farrelly, F.W., Finkelstein, D.B., Taulien, J., and Lindquist, S. (1989). hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Molecular and cellular biology 9, 3919-3930.
Bouwman, P., and Philipsen, S. (2002). Regulation of the activity of Sp1-related transcription factors. Molecular and cellular endocrinology 195, 27-38.
Briggs, M.R., Kadonaga, J.T., Bell, S.P., and Tjian, R. (1986). Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science 234, 47-52.
Caizergues-Ferrer, M., Mariottini, P., Curie, C., Lapeyre, B., Gas, N., Amalric, F., and Amaldi, F. (1989). Nucleolin from Xenopus laevis: cDNA cloning and expression during development. Genes & development 3, 324-333.
Cansino Alcaide, J.R., and Martinez-Pineiro, L. (2006). Molecular biology in prostate cancer. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 8, 148-152.
Chang, W.C., and Hung, J.J. (2012). Functional role of post-translational modifications of Sp1 in tumorigenesis. Journal of biomedical science 19, 94.
Chen, C.Y., Gherzi, R., Andersen, J.S., Gaietta, G., Jurchott, K., Royer, H.D., Mann, M., and Karin, M. (2000). Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes & development 14, 1236-1248.
Chen, S., and Smith, D.F. (1998). Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. The Journal of biological chemistry 273, 35194-35200.
Chim, C.S., Fung, T.K., Wong, K.F., Lau, J.S., Law, M., and Liang, R. (2006). Methylation of INK4 and CIP/KIP families of cyclin-dependent kinase inhibitor in chronic lymphocytic leukaemia in Chinese patients. Journal of clinical pathology 59, 921-926.
Chu, S., and Ferro, T.J. (2005). Sp1: regulation of gene expression by phosphorylation. Gene 348, 1-11.
Chuang, J.Y., Wang, Y.T., Yeh, S.H., Liu, Y.W., Chang, W.C., and Hung, J.J. (2008). Phosphorylation by c-Jun NH2-terminal kinase 1 regulates the stability of transcription factor Sp1 during mitosis. Molecular biology of the cell 19, 1139-1151.
Chun, R.F., Semmes, O.J., Neuveut, C., and Jeang, K.T. (1998). Modulation of Sp1 phosphorylation by human immunodeficiency virus type 1 Tat. Journal of virology 72, 2615-2629.
Connell, P., Ballinger, C.A., Jiang, J., Wu, Y., Thompson, L.J., Hohfeld, J., and Patterson, C. (2001). The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nature cell biology 3, 93-96.
Courey, A.J., Holtzman, D.A., Jackson, S.P., and Tjian, R. (1989). Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell 59, 827-836.
Courey, A.J., and Tjian, R. (1988). Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55, 887-898.
Davis, R.J. (2000). Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252.
de Carcer, G., do Carmo Avides, M., Lallena, M.J., Glover, D.M., and Gonzalez, C. (2001). Requirement of Hsp90 for centrosomal function reflects its regulation of Polo kinase stability. The EMBO journal 20, 2878-2884.
DeBoer, C., Meulman, P.A., Wnuk, R.J., and Peterson, D.H. (1970). Geldanamycin, a new antibiotic. The Journal of antibiotics 23, 442-447.
Dehay, C., and Kennedy, H. (2007). Cell-cycle control and cortical development. Nature reviews. Neuroscience 8, 438-450.
Dezwaan, D.C., and Freeman, B.C. (2008). HSP90: the Rosetta stone for cellular protein dynamics? Cell Cycle 7, 1006-1012.
Dynan, W.S., and Tjian, R. (1983a). Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase II. Cell 32, 669-680.
Dynan, W.S., and Tjian, R. (1983b). The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35, 79-87.
Edmonds, M. (2002). A history of poly A sequences: from formation to factors to function. Progress in nucleic acid research and molecular biology 71, 285-389.
Edwalds-Gilbert, G., Veraldi, K.L., and Milcarek, C. (1997). Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic acids research 25, 2547-2561.
Erard, M., Lakhdar-Ghazal, F., and Amalric, F. (1990). Repeat peptide motifs which contain beta-turns and modulate DNA condensation in chromatin. European journal of biochemistry / FEBS 191, 19-26.
Eustace, B.K., and Jay, D.G. (2004). Extracellular roles for the molecular chaperone, hsp90. Cell Cycle 3, 1098-1100.
Fabian, M.R., Sonenberg, N., and Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Annual review of biochemistry 79, 351-379.
Forafonov, F., Toogun, O.A., Grad, I., Suslova, E., Freeman, B.C., and Picard, D. (2008). p23/Sba1p protects against Hsp90 inhibitors independently of its intrinsic chaperone activity. Molecular and cellular biology 28, 3446-3456.
Forsythe, H.L., Jarvis, J.L., Turner, J.W., Elmore, L.W., and Holt, S.E. (2001). Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. The Journal of biological chemistry 276, 15571-15574.
Freeman, B.C., and Yamamoto, K.R. (2002). Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296, 2232-2235.
Frey, S., Leskovar, A., Reinstein, J., and Buchner, J. (2007). The ATPase cycle of the endoplasmic chaperone Grp94. The Journal of biological chemistry 282, 35612-35620.
Fuchs, S.Y., Adler, V., Buschmann, T., Yin, Z., Wu, X., Jones, S.N., and Ronai, Z. (1998). JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes & development 12, 2658-2663.
Fuchs, S.Y., Dolan, L., Davis, R.J., and Ronai, Z. (1996). Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase. Oncogene 13, 1531-1535.
Fuchs, S.Y., Xie, B., Adler, V., Fried, V.A., Davis, R.J., and Ronai, Z. (1997). c-Jun NH2-terminal kinases target the ubiquitination of their associated transcription factors. The Journal of biological chemistry 272, 32163-32168.
Gamerdinger, M., Hajieva, P., Kaya, A.M., Wolfrum, U., Hartl, F.U., and Behl, C. (2009). Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. The EMBO journal 28, 889-901.
Garcia-Morales, P., Carrasco-Garcia, E., Ruiz-Rico, P., Martinez-Mira, R., Menendez-Gutierrez, M.P., Ferragut, J.A., Saceda, M., and Martinez-Lacaci, I. (2007). Inhibition of Hsp90 function by ansamycins causes downregulation of cdc2 and cdc25c and G(2)/M arrest in glioblastoma cell lines. Oncogene 26, 7185-7193.
Gasc, J.M., Renoir, J.M., Faber, L.E., Delahaye, F., and Baulieu, E.E. (1990). Nuclear localization of two steroid receptor-associated proteins, hsp90 and p59. Experimental cell research 186, 362-367.
Gething, M.J., and Sambrook, J. (1992). Protein folding in the cell. Nature 355, 33-45.
Ghisolfi-Nieto, L., Joseph, G., Puvion-Dutilleul, F., Amalric, F., and Bouvet, P. (1996). Nucleolin is a sequence-specific RNA-binding protein: characterization of targets on pre-ribosomal RNA. Journal of molecular biology 260, 34-53.
Ginisty, H., Sicard, H., Roger, B., and Bouvet, P. (1999). Structure and functions of nucleolin. Journal of cell science 112 ( Pt 6), 761-772.
Glotzer, M. (2005). The molecular requirements for cytokinesis. Science 307, 1735-1739.
Goetz, M.P., Toft, D.O., Ames, M.M., and Erlichman, C. (2003). The Hsp90 chaperone complex as a novel target for cancer therapy. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 14, 1169-1176.
Guo, Y., Guettouche, T., Fenna, M., Boellmann, F., Pratt, W.B., Toft, D.O., Smith, D.F., and Voellmy, R. (2001). Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. The Journal of biological chemistry 276, 45791-45799.
Hainzl, O., Lapina, M.C., Buchner, J., and Richter, K. (2009). The charged linker region is an important regulator of Hsp90 function. The Journal of biological chemistry 284, 22559-22567.
Han, I., and Kudlow, J.E. (1997). Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Molecular and cellular biology 17, 2550-2558.
Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70.
Hance, M.W., Dole, K., Gopal, U., Bohonowych, J.E., Jezierska-Drutel, A., Neumann, C.A., Liu, H., Garraway, I.P., and Isaacs, J.S. (2012). Secreted Hsp90 is a novel regulator of the epithelial to mesenchymal transition (EMT) in prostate cancer. The Journal of biological chemistry 287, 37732-37744.
Hartmann, F., Horak, E.M., Cho, C., Lupu, R., Bolen, J.B., Stetler-Stevenson, M.A., Pfreundschuh, M., Waldmann, T.A., and Horak, I.D. (1997). Effects of the tyrosine-kinase inhibitor geldanamycin on ligand-induced Her-2/neu activation, receptor expression and proliferation of Her-2-positive malignant cell lines. Int. J. Cancer 70, 221-229.
He, S., and Davie, J.R. (2006). Sp1 and Sp3 foci distribution throughout mitosis. Journal of cell science 119, 1063-1070.
Higuchi, H., Grambihler, A., Canbay, A., Bronk, S.F., and Gores, G.J. (2004). Bile acids up-regulate death receptor 5/TRAIL-receptor 2 expression via a c-Jun N-terminal kinase-dependent pathway involving Sp1. The Journal of biological chemistry 279, 51-60.
Holt, S.E., Aisner, D.L., Baur, J., Tesmer, V.M., Dy, M., Ouellette, M., Trager, J.B., Morin, G.B., Toft, D.O., Shay, J.W., et al. (1999). Functional requirement of p23 and Hsp90 in telomerase complexes. Genes & development 13, 817-826.
Hosoi, Y., Watanabe, T., Nakagawa, K., Matsumoto, Y., Enomoto, A., Morita, A., Nagawa, H., and Suzuki, N. (2004). Up-regulation of DNA-dependent protein kinase activity and Sp1 in colorectal cancer. International journal of oncology 25, 461-468.
Hubert, D.A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A., Shirasu, K., and Dangl, J.L. (2003). Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. The EMBO journal 22, 5679-5689.
Hung, J.J., Wang, Y.T., and Chang, W.C. (2006). Sp1 deacetylation induced by phorbol ester recruits p300 to activate 12(S)-lipoxygenase gene transcription. Molecular and cellular biology 26, 1770-1785.
Hung, J.J., Wu, C.Y., Liao, P.C., and Chang, W.C. (2005). Hsp90alpha recruited by Sp1 is important for transcription of 12(S)-lipoxygenase in A431 cells. The Journal of biological chemistry 280, 36283-36292.
Hutchison, C.J., Bridger, J.M., Cox, L.S., and Kill, I.R. (1994). Weaving a pattern from disparate threads: lamin function in nuclear assembly and DNA replication. Journal of cell science 107 ( Pt 12), 3259-3269.
Ishimaru, D., Zuraw, L., Ramalingam, S., Sengupta, T.K., Bandyopadhyay, S., Reuben, A., Fernandes, D.J., and Spicer, E.K. (2010). Mechanism of regulation of bcl-2 mRNA by nucleolin and A+U-rich element-binding factor 1 (AUF1). The Journal of biological chemistry 285, 27182-27191.
Jascur, T., Brickner, H., Salles-Passador, I., Barbier, V., El Khissiin, A., Smith, B., Fotedar, R., and Fotedar, A. (2005). Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein. Molecular cell 17, 237-249.
Jez, J.M., Chen, J.C., Rastelli, G., Stroud, R.M., and Santi, D.V. (2003). Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chemistry & biology 10, 361-368.
Johnson, J.L., and Toft, D.O. (1995). Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol Endocrinol 9, 670-678.
Jolliff, K., Li, Y., and Johnson, L.F. (1991). Multiple protein-DNA interactions in the TATAA-less mouse thymidylate synthase promoter. Nucleic acids research 19, 2267-2274.
Jones, K.A., Kadonaga, J.T., Luciw, P.A., and Tjian, R. (1986). Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science 232, 755-759.
Kaczynski, J., Cook, T., and Urrutia, R. (2003). Sp1- and Kruppel-like transcription factors. Genome biology 4, 206.
Kadonaga, J.T. (1998). Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92, 307-313.
Kadonaga, J.T., Carner, K.R., Masiarz, F.R., and Tjian, R. (1987). Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51, 1079-1090.
Kang, H.T., Ju, J.W., Cho, J.W., and Hwang, E.S. (2003). Down-regulation of Sp1 activity through modulation of O-glycosylation by treatment with a low glucose mimetic, 2-deoxyglucose. The Journal of biological chemistry 278, 51223-51231.
Katafiasz, B.J., Nieman, M.T., Wheelock, M.J., and Johnson, K.R. (2003). Characterization of cadherin-24, a novel alternatively spliced type II cadherin. The Journal of biological chemistry 278, 27513-27519.
Khabar, K.S. (2010). Post-transcriptional control during chronic inflammation and cancer: a focus on AU-rich elements. Cellular and molecular life sciences : CMLS 67, 2937-2955.
Kim, E.K., and Choi, E.J. (2010). Pathological roles of MAPK signaling pathways in human diseases. Biochimica et biophysica acta 1802, 396-405.
Kimmins, S., and MacRae, T.H. (2000). Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Cell stress & chaperones 5, 76-86.
Kollmar, R., Sukow, K.A., Sponagle, S.K., and Farnham, P.J. (1994). Start site selection at the TATA-less carbamoyl-phosphate synthase (glutamine-hydrolyzing)/aspartate carbamoyltransferase/dihydroorotase promoter. The Journal of biological chemistry 269, 2252-2257.
Kovacs, J.J., Murphy, P.J., Gaillard, S., Zhao, X., Wu, J.T., Nicchitta, C.V., Yoshida, M., Toft, D.O., Pratt, W.B., and Yao, T.P. (2005). HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Molecular cell 18, 601-607.
Krukenberg, K.A., Street, T.O., Lavery, L.A., and Agard, D.A. (2011). Conformational dynamics of the molecular chaperone Hsp90. Quarterly reviews of biophysics 44, 229-255.
Kuduk, S.D., Harris, T.C., Zheng, F.F., Sepp-Lorenzino, L., Ouerfelli, Q., Rosen, N., and Danishefsky, S.J. (2000). Synthesis and evaluation of geldanamycin-testosterone hybrids. Bioorganic & medicinal chemistry letters 10, 1303-1306.
Kuduk, S.D., Zheng, F.F., Sepp-Lorenzino, L., Rosen, N., and Danishefsky, S.J. (1999). Synthesis and evaluation of geldanamycin-estradiol hybrids. Bioorganic & medicinal chemistry letters 9, 1233-1238.
Leskovar, A., Wegele, H., Werbeck, N.D., Buchner, J., and Reinstein, J. (2008). The ATPase cycle of the mitochondrial Hsp90 analog Trap1. The Journal of biological chemistry 283, 11677-11688.
Lewis, J., Devin, A., Miller, A., Lin, Y., Rodriguez, Y., Neckers, L., and Liu, Z.G. (2000). Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. The Journal of biological chemistry 275, 10519-10526.
Li, J., Soroka, J., and Buchner, J. (2012). The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochimica et biophysica acta 1823, 624-635.
Liang, P., and MacRae, T.H. (1997). Molecular chaperones and the cytoskeleton. Journal of cell science 110 ( Pt 13), 1431-1440.
Lloyd, C., and Chan, J. (2006). Not so divided: the common basis of plant and animal cell division. Nature reviews. Molecular cell biology 7, 147-152.
Lolli, G., and Johnson, L.N. (2005). CAK-Cyclin-dependent Activating Kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 4, 572-577.
Loyer, P., Trembley, J.H., Katona, R., Kidd, V.J., and Lahti, J.M. (2005). Role of CDK/cyclin complexes in transcription and RNA splicing. Cellular signalling 17, 1033-1051.
Lu, J., Lee, W., Jiang, C., and Keller, E.B. (1994). Start site selection by Sp1 in the TATA-less human Ha-ras promoter. The Journal of biological chemistry 269, 5391-5402.
Maloney, A., and Workman, P. (2002). HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert opinion on biological therapy 2, 3-24.
Malumbres, M., and Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nature reviews. Cancer 9, 153-166.
Maruya, M., Sameshima, M., Nemoto, T., and Yahara, I. (1999). Monomer arrangement in HSP90 dimer as determined by decoration with N and C-terminal region specific antibodies. Journal of molecular biology 285, 903-907.
Mazure, N.M., Brahimi-Horn, M.C., and Pouyssegur, J. (2003). Protein kinases and the hypoxia-inducible factor-1, two switches in angiogenesis. Current pharmaceutical design 9, 531-541.
Mazzucchelli, R., Barbisan, F., Tarquini, L.M., Galosi, A.B., and Stramazzotti, D. (2004). Molecular mechanisms in prostate cancer. A review. Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology 26, 127-133.
McCarty, M.F. (2004). Targeting multiple signaling pathways as a strategy for managing prostate cancer: multifocal signal modulation therapy. Integrative cancer therapies 3, 349-380.
McLaughlin, S.H., Sobott, F., Yao, Z.P., Zhang, W., Nielsen, P.R., Grossmann, J.G., Laue, E.D., Robinson, C.V., and Jackson, S.E. (2006). The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. Journal of molecular biology 356, 746-758.
Merchant, J.L., Du, M., and Todisco, A. (1999). Sp1 phosphorylation by Erk 2 stimulates DNA binding. Biochemical and biophysical research communications 254, 454-461.
Meyer, P., Prodromou, C., Liao, C., Hu, B., Mark Roe, S., Vaughan, C.K., Vlasic, I., Panaretou, B., Piper, P.W., and Pearl, L.H. (2004). Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. The EMBO journal 23, 511-519.
Mi, Y., Thomas, S.D., Xu, X., Casson, L.K., Miller, D.M., and Bates, P.J. (2003). Apoptosis in leukemia cells is accompanied by alterations in the levels and localization of nucleolin. The Journal of biological chemistry 278, 8572-8579.
Miller, P., Schnur, R.C., Barbacci, E., Moyer, M.P., and Moyer, J.D. (1994). Binding of benzoquinoid ansamycins to p100 correlates with their ability to deplete the erbB2 gene product p185. Biochemical and biophysical research communications 201, 1313-1319.
Mongelard, F., and Bouvet, P. (2007). Nucleolin: a multiFACeTed protein. Trends in cell biology 17, 80-86.
Nadeau, K., Das, A., and Walsh, C.T. (1993). Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. The Journal of biological chemistry 268, 1479-1487.
Nagata, Y., Anan, T., Yoshida, T., Mizukami, T., Taya, Y., Fujiwara, T., Kato, H., Saya, H., and Nakao, M. (1999). The stabilization mechanism of mutant-type p53 by impaired ubiquitination: the loss of wild-type p53 function and the hsp90 association. Oncogene 18, 6037-6049.
Nagata, Y., Nishida, E., and Todokoro, K. (1997). Activation of JNK signaling pathway by erythropoietin, thrombopoietin, and interleukin-3. Blood 89, 2664-2669.
Nelson, D.M., Ye, X., Hall, C., Santos, H., Ma, T., Kao, G.D., Yen, T.J., Harper, J.W., and Adams, P.D. (2002). Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity. Molecular and cellular biology 22, 7459-7472.
Nieto-Miguel, T., Gajate, C., Gonzalez-Camacho, F., and Mollinedo, F. (2008). Proapoptotic role of Hsp90 by its interaction with c-Jun N-terminal kinase in lipid rafts in edelfosine-mediated antileukemic therapy. Oncogene 27, 1779-1787.
Ochel, H.J., Schulte, T.W., Nguyen, P., Trepel, J., and Neckers, L. (1999). The benzoquinone ansamycin geldanamycin stimulates proteolytic degradation of focal adhesion kinase. Molecular genetics and metabolism 66, 24-30.
Opitz, O.G., and Rustgi, A.K. (2000). Interaction between Sp1 and cell cycle regulatory proteins is important in transactivation of a differentiation-related gene. Cancer research 60, 2825-2830.
Ostareck-Lederer, A., and Ostareck, D.H. (2004). Control of mRNA translation and stability in haematopoietic cells: the function of hnRNPs K and E1/E2. Biology of the cell / under the auspices of the European Cell Biology Organization 96, 407-411.
Panaretou, B., Prodromou, C., Roe, S.M., O'Brien, R., Ladbury, J.E., Piper, P.W., and Pearl, L.H. (1998). ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. The EMBO journal 17, 4829-4836.
Panaretou, B., Siligardi, G., Meyer, P., Maloney, A., Sullivan, J.K., Singh, S., Millson, S.H., Clarke, P.A., Naaby-Hansen, S., Stein, R., et al. (2002). Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Molecular cell 10, 1307-1318.
Park, M., Yong Kang, C., and Krishna, P. (1998). Brassica napus hsp90 can autophosphorylate and phosphorylate other protein substrates. Molecular and cellular biochemistry 185, 33-38.
Parmiani, G., Testori, A., Maio, M., Castelli, C., Rivoltini, L., Pilla, L., Belli, F., Mazzaferro, V., Coppa, J., Patuzzo, R., et al. (2004). Heat shock proteins and their use as anticancer vaccines. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 8142-8146.
Pascal, E., and Tjian, R. (1991). Different activation domains of Sp1 govern formation of multimers and mediate transcriptional synergism. Genes & development 5, 1646-1656.
Peng, C., Brain, J., Hu, Y., Goodrich, A., Kong, L., Grayzel, D., Pak, R., Read, M., and Li, S. (2007). Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells. Blood 110, 678-685.
Picard, D., Khursheed, B., Garabedian, M.J., Fortin, M.G., Lindquist, S., and Yamamoto, K.R. (1990). Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348, 166-168.
Pratt, W.B., Morishima, Y., Murphy, M., and Harrell, M. (2006). Chaperoning of glucocorticoid receptors. Handbook of experimental pharmacology, 111-138.
Pratt, W.B., Morishima, Y., Peng, H.M., and Osawa, Y. (2010). Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med (Maywood) 235, 278-289.
Pratt, W.B., and Toft, D.O. (1997). Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocrine reviews 18, 306-360.
Prodromou, C., Panaretou, B., Chohan, S., Siligardi, G., O'Brien, R., Ladbury, J.E., Roe, S.M., Piper, P.W., and Pearl, L.H. (2000). The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. The EMBO journal 19, 4383-4392.
Prodromou, C., Roe, S.M., O'Brien, R., Ladbury, J.E., Piper, P.W., and Pearl, L.H. (1997). Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65-75.
Pugh, B.F., and Tjian, R. (1991). Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes & development 5, 1935-1945.
Quereda, V., and Malumbres, M. (2009). Cell cycle control of pituitary development and disease. Journal of molecular endocrinology 42, 75-86.
Richter, K., and Buchner, J. (2001). Hsp90: chaperoning signal transduction. Journal of cellular physiology 188, 281-290.
Richter, K., Haslbeck, M., and Buchner, J. (2010). The heat shock response: life on the verge of death. Molecular cell 40, 253-266.
Roberts, P.J., and Der, C.J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310.
Roe, S.M., Ali, M.M., Meyer, P., Vaughan, C.K., Panaretou, B., Piper, P.W., Prodromou, C., and Pearl, L.H. (2004). The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116, 87-98.
Rohlff, C., Ahmad, S., Borellini, F., Lei, J., and Glazer, R.I. (1997). Modulation of transcription factor Sp1 by cAMP-dependent protein kinase. The Journal of biological chemistry 272, 21137-21141.
Roos, M.D., Su, K., Baker, J.R., and Kudlow, J.E. (1997). O glycosylation of an Sp1-derived peptide blocks known Sp1 protein interactions. Molecular and cellular biology 17, 6472-6480.
Rothstein, T.L. (2000). Inducible resistance to Fas-mediated apoptosis in B cells. Cell research 10, 245-266.
Sabapathy, K., Hochedlinger, K., Nam, S.Y., Bauer, A., Karin, M., and Wagner, E.F. (2004). Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Molecular cell 15, 713-725.
Safe, S., and Abdelrahim, M. (2005). Sp transcription factor family and its role in cancer. Eur J Cancer 41, 2438-2448.
Saffer, J.D., Jackson, S.P., and Annarella, M.B. (1991). Developmental expression of Sp1 in the mouse. Molecular and cellular biology 11, 2189-2199.
Sanchez, E.R., Hirst, M., Scherrer, L.C., Tang, H.Y., Welsh, M.J., Harmon, J.M., Simons, S.S., Jr., Ringold, G.M., and Pratt, W.B. (1990). Hormone-free mouse glucocorticoid receptors overexpressed in Chinese hamster ovary cells are localized to the nucleus and are associated with both hsp70 and hsp90. The Journal of biological chemistry 265, 20123-20130.
Sato, S., Fujita, N., and Tsuruo, T. (2000). Modulation of Akt kinase activity by binding to Hsp90. Proceedings of the National Academy of Sciences of the United States of America 97, 10832-10837.
Satyanarayana, A., and Kaldis, P. (2009). Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28, 2925-2939.
Scheufler, C., Brinker, A., Bourenkov, G., Pegoraro, S., Moroder, L., Bartunik, H., Hartl, F.U., and Moarefi, I. (2000). Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199-210.
Schulte, T.W., Blagosklonny, M.V., Ingui, C., and Neckers, L. (1995). Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. The Journal of biological chemistry 270, 24585-24588.
Schulte, T.W., and Neckers, L.M. (1998). The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer chemotherapy and pharmacology 42, 273-279.
Schulz, S., Stumm, R., Rocken, C., and Mawrin, C. (2006). Immunolocalization of full-length NK1 tachykinin receptors in human tumors. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 54, 1015-1020.
Schwartz, G.K. (2005). Development of cell cycle active drugs for the treatment of gastrointestinal cancers: a new approach to cancer therapy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23, 4499-4508.
Schwartz, G.K., and Shah, M.A. (2005). Targeting the cell cycle: a new approach to cancer therapy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23, 9408-9421.
Semenkovich, C.F., Ostlund, R.E., Jr., Olson, M.O., and Yang, J.W. (1990). A protein partially expressed on the surface of HepG2 cells that binds lipoproteins specifically is nucleolin. Biochemistry 29, 9708-9713.
Sengupta, T.K., Bandyopadhyay, S., Fernandes, D.J., and Spicer, E.K. (2004). Identification of nucleolin as an AU-rich element binding protein involved in bcl-2 mRNA stabilization. The Journal of biological chemistry 279, 10855-10863.
Senju, M., Sueoka, N., Sato, A., Iwanaga, K., Sakao, Y., Tomimitsu, S., Tominaga, M., Irie, K., Hayashi, S., and Sueoka, E. (2006). Hsp90 inhibitors cause G2/M arrest associated with the reduction of Cdc25C and Cdc2 in lung cancer cell lines. Journal of cancer research and clinical oncology 132, 150-158.
Sepehrnia, B., Paz, I.B., Dasgupta, G., and Momand, J. (1996). Heat shock protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell. The Journal of biological chemistry 271, 15084-15090.
Sidera, K., and Patsavoudi, E. (2008). Extracellular HSP90: conquering the cell surface. Cell Cycle 7, 1564-1568.
Smith, D.F., Whitesell, L., Nair, S.C., Chen, S., Prapapanich, V., and Rimerman, R.A. (1995). Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Molecular and cellular biology 15, 6804-6812.
Southworth, D.R., and Agard, D.A. (2011). Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:Hop complex. Molecular cell 42, 771-781.
Srivastava, M., and Pollard, H.B. (1999). Molecular dissection of nucleolin's role in growth and cell proliferation: new insights. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 13, 1911-1922.
Steinman, R.A. (2007). mRNA stability control: a clandestine force in normal and malignant hematopoiesis. Leukemia 21, 1158-1171.
Stepanova, L., Leng, X., Parker, S.B., and Harper, J.W. (1996). Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes & development 10, 1491-1502.
Supko, J.G., Hickman, R.L., Grever, M.R., and Malspeis, L. (1995). Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer chemotherapy and pharmacology 36, 305-315.
Suske, G. (1999). The Sp-family of transcription factors. Gene 238, 291-300.
Taipale, M., Jarosz, D.F., and Lindquist, S. (2010). HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature reviews. Molecular cell biology 11, 515-528.
Tak, Y.S., Tanaka, Y., Endo, S., Kamimura, Y., and Araki, H. (2006). A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2-Dpb11. The EMBO journal 25, 1987-1996.
Tellez, C., and Bar-Eli, M. (2003). Role and regulation of the thrombin receptor (PAR-1) in human melanoma. Oncogene 22, 3130-3137.
Terasawa, K., Minami, M., and Minami, Y. (2005). Constantly updated knowledge of Hsp90. Journal of biochemistry 137, 443-447.
Tsutsumi, S., Mollapour, M., Graf, C., Lee, C.T., Scroggins, B.T., Xu, W., Haslerova, L., Hessling, M., Konstantinova, A.A., Trepel, J.B., et al. (2009). Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain. Nature structural & molecular biology 16, 1141-1147.
Uehara, Y., Hori, M., Takeuchi, T., and Umezawa, H. (1986). Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus. Molecular and cellular biology 6, 2198-2206.
Vaughan, C.K., Mollapour, M., Smith, J.R., Truman, A., Hu, B., Good, V.M., Panaretou, B., Neckers, L., Clarke, P.A., Workman, P., et al. (2008). Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Molecular cell 31, 886-895.
Vicart, A., Lefebvre, T., Imbert, J., Fernandez, A., and Kahn-Perles, B. (2006). Increased chromatin association of Sp1 in interphase cells by PP2A-mediated dephosphorylations. Journal of molecular biology 364, 897-908.
Villagra, A., Cheng, F., Wang, H.W., Suarez, I., Glozak, M., Maurin, M., Nguyen, D., Wright, K.L., Atadja, P.W., Bhalla, K., et al. (2009). The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nature immunology 10, 92-100.
Wagner, E.F., and Nebreda, A.R. (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nature reviews. Cancer 9, 537-549.
Wandinger, S.K., Richter, K., and Buchner, J. (2008). The Hsp90 chaperone machinery. The Journal of biological chemistry 283, 18473-18477.
Wang, L., Wei, D., Huang, S., Peng, Z., Le, X., Wu, T.T., Yao, J., Ajani, J., and Xie, K. (2003). Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 9, 6371-6380.
Wang, S.A., Chuang, J.Y., Yeh, S.H., Wang, Y.T., Liu, Y.W., Chang, W.C., and Hung, J.J. (2009). Heat shock protein 90 is important for Sp1 stability during mitosis. Journal of molecular biology 387, 1106-1119.
Wang, Y.T., Chuang, J.Y., Shen, M.R., Yang, W.B., Chang, W.C., and Hung, J.J. (2008). Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1 proteolytic process. Journal of molecular biology 380, 869-885.
Webb, C.P., Hose, C.D., Koochekpour, S., Jeffers, M., Oskarsson, M., Sausville, E., Monks, A., and Vande Woude, G.F. (2000). The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer research 60, 342-349.
Wegele, H., Muller, L., and Buchner, J. (2004). Hsp70 and Hsp90--a relay team for protein folding. Reviews of physiology, biochemistry and pharmacology 151, 1-44.
White, J., and Dalton, S. (2005). Cell cycle control of embryonic stem cells. Stem cell reviews 1, 131-138.
Whitesell, L., and Lindquist, S.L. (2005). HSP90 and the chaperoning of cancer. Nature reviews. Cancer 5, 761-772.
Whitesell, L., Mimnaugh, E.G., De Costa, B., Myers, C.E., and Neckers, L.M. (1994). Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proceedings of the National Academy of Sciences of the United States of America 91, 8324-8328.
Wierstra, I. (2008). Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochemical and biophysical research communications 372, 1-13.
Willimott, S., and Wagner, S.D. (2010). Post-transcriptional and post-translational regulation of Bcl2. Biochemical Society transactions 38, 1571-1575.
Winey, M., Mamay, C.L., O'Toole, E.T., Mastronarde, D.N., Giddings, T.H., Jr., McDonald, K.L., and McIntosh, J.R. (1995). Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. The Journal of cell biology 129, 1601-1615.
Workman, P. (2003). Overview: translating Hsp90 biology into Hsp90 drugs. Current cancer drug targets 3, 297-300.
Workman, P. (2004). Altered states: selectively drugging the Hsp90 cancer chaperone. Trends in molecular medicine 10, 47-51.
Xu, W., Mimnaugh, E.G., Kim, J.S., Trepel, J.B., and Neckers, L.M. (2002). Hsp90, not Grp94, regulates the intracellular trafficking and stability of nascent ErbB2. Cell stress & chaperones 7, 91-96.
Yang, X., Su, K., Roos, M.D., Chang, Q., Paterson, A.J., and Kudlow, J.E. (2001). O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proceedings of the National Academy of Sciences of the United States of America 98, 6611-6616.
Young, J.C., Agashe, V.R., Siegers, K., and Hartl, F.U. (2004). Pathways of chaperone-mediated protein folding in the cytosol. Nature reviews. Molecular cell biology 5, 781-791.
Young, J.C., Moarefi, I., and Hartl, F.U. (2001). Hsp90: a specialized but essential protein-folding tool. The Journal of cell biology 154, 267-273.
Zeng, Y., Feng, H., Graner, M.W., and Katsanis, E. (2003). Tumor-derived, chaperone-rich cell lysate activates dendritic cells and elicits potent antitumor immunity. Blood 101, 4485-4491.
Zenzie-Gregory, B., Khachi, A., Garraway, I.P., and Smale, S.T. (1993). Mechanism of initiator-mediated transcription: evidence for a functional interaction between the TATA-binding protein and DNA in the absence of a specific recognition sequence. Molecular and cellular biology 13, 3841-3849.
Zhang, F., Hu, Y., Huang, P., Toleman, C.A., Paterson, A.J., and Kudlow, J.E. (2007). Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. The Journal of biological chemistry 282, 22460-22471.
Zhang, H., and Burrows, F. (2004). Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med (Berl) 82, 488-499.
Zhang, J., Tsaprailis, G., and Bowden, G.T. (2008a). Nucleolin stabilizes Bcl-X L messenger RNA in response to UVA irradiation. Cancer research 68, 1046-1054.
Zhang, M., Boter, M., Li, K., Kadota, Y., Panaretou, B., Prodromou, C., Shirasu, K., and Pearl, L.H. (2008b). Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. The EMBO journal 27, 2789-2798.
Zhang, Y., Bhatia, D., Xia, H., Castranova, V., Shi, X., and Chen, F. (2006). Nucleolin links to arsenic-induced stabilization of GADD45alpha mRNA. Nucleic acids research 34, 485-495.
Zhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., et al. (2005). Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715-727.
Zou, J., Guo, Y., Guettouche, T., Smith, D.F., and Voellmy, R. (1998). Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471-480.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-06-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-06-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw