進階搜尋


下載電子全文  
系統識別號 U0026-1202201915243200
論文名稱(中文) 出流水有機物對UF膜程序水處理效能之影響
論文名稱(英文) Effect of Effluent Organic Matter (EfOM) on the Performance of Water Treatment with UF Membrane Process
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 蕾妮
研究生(英文) Reni Mita Diwanti
電子信箱 renimita@gmail.com
學號 P56067011
學位類別 碩士
語文別 英文
論文頁數 96頁
口試委員 指導教授-林財富
口試委員-黃良銘
口試委員-葉宣顯
口試委員-王根樹
口試委員-陳彥旻
中文關鍵字 出廢水出流水有機物  高級氧化程序  雙氧水/臭氧  BioNET  有機物特性  有機物分子量分佈特性  螢光激發/發散陣列 
英文關鍵字 Effluent Organic Matter (EfOM)  H2O2/O3  BioNET  organic characteristic  HPSEC  FEEM 
學科別分類
中文摘要 工業排放廢水回收再利用是一個重要的策略,其可減少水資源消耗與提升其利用率。然而針對三級處理後之排放水進行水回收再利用仍有些問題需要克服,特別於薄膜處理時之阻塞問題。
為探討工業廢水回收,本研究針對兩處工業廢水處理廠(高雄市之林園與楠梓加工區)出流水有機物(effluent organic matter, EfOM)之處理進行研究,評估以臭氧結合雙氧水之高級氧化後、加上BioNET程序效率及/或UF薄膜過濾,處理水之EfOM特性變化,並以螢光光譜儀與 (flourescence excitation and emission spectroscopy, FEEMs)與分子量層析儀分析鑑定。
本研究首先針對目標水廠出水EfOM特性分析,結果顯示,在有機物之親疏水性特性,林園SUVA值高於楠梓;螢光光譜分析結果顯示林園含較高之腐植質,而楠梓則含較多之芳香蛋白質。由此可見,林園之EfOM之有機物特性主要以疏水性為主,而楠梓則以親水性為主。以AOP程序之臭氧結果雙氧水進行有EfOM氧化效能評估,結果顯示,氧化可將大分子之有機物氧化成小分子有機物;但林園之廢水則需臭氧劑量高於150 O3-mg/L才有效果,因此若擬以此廢水進行AOP處理,則需要較高之成本。為提升生物處理BioNET程序,以AOP將難生物降解之大分子量氧化成小分子量,由結果顯示林園之EfOM物質於BioNET程序不論之否有經氧化,均會導致微生物衰亡而釋出有機物。而楠梓水則有利於有生物處理,主因為其水特性為直鏈結構之親水性EfOM。而經由AOP程序雖不能提升BioNET生物降解能力,但對於UF薄膜阻塞控制可有效的幫助。
英文摘要 Industrial wastewater reclamation is an important strategy for reducing freshwater consumption and improving water reuse. However, reuse of treated wastewater has caused serious operation problems. It was found that secondary and tertiary effluent contained high concentration of effluent organic matter (EfOM), leading to membrane fouling issue. To evaluate the properties of EfOM in different effluents, including water treated with advanced oxidation processes (AOP), biological processes (BioNET) and ultrafiltration (UF), flourescence excitation and emission spectroscopy (FEEMs) and high pressure size exclusion chromatography (HPSEC) were employed for the analysis. Water samples were taken from two wastewater treatment plants (WWTPs), Linyuan and Nanzi WWTPs, and analyzed with the two methods. Linyuan samples were found to have higher humics and more hydrophibic than those for Nanzi samples. For Nanzi samples, they were found to be dominated by aromatic protein II fraction coming from biological activity. The AOP treatment using ozone and ozone/hydrogen peroxide in this study was effective to remove large molecule EfOM (LM-EfOM) when applied in Nanzi sample with small dosage. However, it was not effective for Linyuan samples. The BioNET treatment in this study was effective to remove LM-EfOM only for Nanzi sample. Flux declination is decreased when applied ozone and decreased following with oxidant dosage in UF system. Moreover, biopolymer is the highest fraction to be removed by UF, which is the main cause for flux reduction.
論文目次 ABSTRACT I
ACKNOWLEDGEMENTS IV
TABLE OF CONTENTS V
LIST OF TABLES VIII
LIST OF FIGURES X
CHAPTER ONE INTRODUCTION 1
1.1 Research Background. 1
1.2 Research Objectives. 3
CHAPTER TWO LITERATURE REVIEW 4
2.1 Effluent organic matter (EfOM) characterization. 4
2.2 Advanced oxidation processes. 5
2.3. Biological technology treatment (BioNET). 9
2.3.1. Attached Growth Design Principles. 10
2.4 Ultrafiltration process and fouling problems. 12
2.4.1 Membrane Materials. 15
2.4.2 Membrane Characterization. 17
2.4.3. Membrane Performance. 19
2.4.4. Fouling control procedures. 25
2.5 Characterization of Effluent Organic Matter (EfOM) 26
2.5.1. Total Organic Carbon (TOC). 26
2.5.2. Ultraviolet Visible (UV-Vis) absorbance. 26
2.5.3. Spesific UV-absorbance (SUVA). 27
2.5.4. High Performance Size Exclusion Chromatography (HPSEC). 27
2.5.5. Fluorescence Excitation Emission Spectroscopy (FEEMs). 28
CHAPTER THREE METHODOLOGY 30
3.1 Sample collection. 30
3.2 Experimental set-up. 30
3.3 Advanced oxidation treatment. 31
3.4 Biological treatment technology (BioNET) treatment. 33
3.5 Ultrafiltration membrane system 34
3.6 Analytical method. 37
3.6.1 NPDOC and UV254 measurement. 37
3.6.2 Fluorescence excitation emission spectroscopy. 37
3.6.3 High performance size exclusion chromatography (HPSEC) coupled with organic carbon detector (OCD) and ultraviolet visible detector (UVD). 39
CHAPTER FOUR RESEARCH RESULTS 41
4.1 Wastewater properties 41
4.1.1. Basic water quality in EfOM samples 41
4.1.2. HPSEC chromatograph for EfOM sample (Nanzi and Liyuan). 41
4.1.3. Fluorescence Excitation and Emission Spectroscopy (FEEM) of EfOM sample. 43
4.2 AOP (Advanced Oxidation Process) Performance. 45
4.2.1. The EfOM characteristic after AOP treatment. 45
4.2.2. HPSEC chromatograph of EfOM sample after AOP treatment. 47
4.2.3. Fluorescence Excitation and Emission Spectroscopy (FEEM) of EfOM sample after AOP treatment. 50
4.3 BioNET Performance. 56
4.3.1. EfOM characteristic after BioNET treatment. 56
4.3.2. The HPSEC –OCD and UVD value after BioNET treatment. 58
4.3.3. The FEEM spectra value after BioNET treatment. 61
4.4 Ultrafiltration system. 66
4.4.1. The flux decline during UF process 67
4.4.2. The NPDOC value after UF process 68
4.4.3. The HPSEC-OCD result before and after UF process 69
CHAPTER FIVE CONCLUSION AND SUGGESTIONS 72
5.1 Conclusions. 72
5.1.1.72Treatment train for Nanzi sample 72
5.1.2. Treatment train for Linyuan sample 73
5.2 Suggestion. 74
REFERENCES 75
APPENDICES 79
參考文獻 Anthony. W. (2012). Membrane Processes for Water Reuse: McGraw-Hill Professional.
Audenaert. W. T. M.. Vandierendonck. D.. Van Hulle. S. W. H.. & Nopens. I. (2013). Comparison of ozone and HO induced conversion of effluent organic matter (EfOM) using ozonation and UV/H2O2 treatment. Water Research. 47(7). 2387-2398. doi: https://doi.org/10.1016/j.watres.2013.02.003
Barazesh. J. M.. Hennebel. T.. Jasper. J. T.. & Sedlak. D. L. (2015). Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production. Environmental Science & Technology. 49(12). 7391-7399. doi: 10.1021/acs.est.5b01254
Barker. D. J.. & Stuckey. D. C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research. 33(14). 3063-3082. doi: https://doi.org/10.1016/S0043-1354(99)00022-6
Bourgeous. K. N.. Darby. J. L.. & Tchobanoglous. G. (2001). Ultrafiltration of wastewater: effects of particles. mode of operation. and backwash effectiveness. Water Research. 35(1). 77-90. doi: https://doi.org/10.1016/S0043-1354(00)00225-6
Cai. M.-J.. & Lin. Y.-P. (2016). Effects of effluent organic matter (EfOM) on the removal of emerging contaminants by ozonation. Chemosphere. 151. 332-338. doi: https://doi.org/10.1016/j.chemosphere.2016.02.094
Campos-Martin. J. M.. Blanco-Brieva. G.. & Fierro. J. L. G. (2006). Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process. Angewandte Chemie International Edition. 45(42). 6962-6984. doi: 10.1002/anie.200503779
. Chapter 2 - Fundamentals. (2011). In S. Judd & C. Judd (Eds.). The MBR Book (Second Edition) (pp. 55-207). Oxford: Butterworth-Heinemann.
Chen. W.. Westerhoff. P.. Leenheer. J. A.. & Booksh. K. (2003). Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology. 37(24). 5701-5710. doi: 10.1021/es034354c
Cheng. X.. Liang. H.. Ding. A.. Qu. F.. Shao. S.. Liu. B.. Li. G. (2016). Effects of pre-ozonation on the ultrafiltration of different natural organic matter (NOM) fractions: Membrane fouling mitigation. prediction and mechanism. Journal of Membrane Science. 505. 15-25. doi: https://doi.org/10.1016/j.memsci.2016.01.022
Costa. A. R.. de Pinho. M. N.. & Elimelech. M. (2006). Mechanisms of colloidal natural organic matter fouling in ultrafiltration. Journal of Membrane Science. 281(1). 716-725. doi: https://doi.org/10.1016/j.memsci.2006.04.044
Crozes. G. F.. Jacangelo. J. G.. Anselme. C.. & Laîné. J. M. (1997). Impact of ultrafiltration operating conditions on membrane irreversible fouling. Journal of Membrane Science. 124(1). 63-76. doi: https://doi.org/10.1016/S0376-7388(96)00244-X
Davis. M. L. (2013). Water and wastewater engineering design principles and practice. New York :: McGraw-Hill.
Feng. X.. & Chu. K. H. (2004). Cost Optimization of Industrial Wastewater Reuse Systems. Process Safety and Environmental Protection. 82(3). 249-255. doi: https://doi.org/10.1205/095758204323066019
Furumai. H. (2008). Rainwater and reclaimed wastewater for sustainable urban water use. Physics and Chemistry of the Earth. Parts A/B/C. 33(5). 340-346. doi: https://doi.org/10.1016/j.pce.2008.02.029
Gao. W.. Liang. H.. Ma. J.. Han. M.. Chen. Z.-l.. Han. Z.-s.. & Li. G.-b. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination. 272(1). 1-8. doi: https://doi.org/10.1016/j.desal.2011.01.051
Gottschalk. C.. Libra. J. A.. & Saupe. A. (2010). Front Matter Ozonation of Water and Waste Water 2e - A Practical Guide to Understanding Ozone and its Applications.
Guo. J.. Liu. H.. Liu. J.. & Wang. L. (2014). Ultrafiltration performance of EfOM and NOM under different MWCO membranes: Comparison with fluorescence spectroscopy and gel filtration chromatography. Desalination. 344. 129-136. doi: https://doi.org/10.1016/j.desal.2014.03.006
Guo. X.. Zhang. Z.. Fang. L.. & Su. L. (2009). Study on ultrafiltration for surface water by a polyvinylchloride hollow fiber membrane. Desalination. 238(1). 183-191. doi: https://doi.org/10.1016/j.desal.2007.11.064
Hidayah. E. N.. Chou. Y.-C.. & Yeh. H.-H. (2017). Comparison between HPSEC-OCD and F-EEMs for assessing DBPs formation in water. Journal of Environmental Science and Health. Part A. 52(4). 391-402. doi: 10.1080/10934529.2016.1262607
Industrial Wastewater Recovery & Re-use with Membranes. (2003). Filtration & Separation. 40(7). 38-40. doi: https://doi.org/10.1016/S0015-1882(03)00731-6
Jarusutthirak. C.. & Amy. G. (2001) Membrane filtration of wastewater effluents for reuse: Effluent organic matter rejection and fouling. Vol. 43. Water Science and Technology (pp. 225-232).
Jarusutthirak. C.. & Amy. G. (2007). Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM). Water Research. 41(12). 2787-2793.
Jermann. D.. Pronk. W.. Meylan. S.. & Boller. M. (2007). Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production. Water Research. 41(8). 1713-1722. doi: https://doi.org/10.1016/j.watres.2006.12.030
Kim. H.-C.. & Dempsey. B. A. (2008). Effects of wastewater effluent organic materials on fouling in ultrafiltration. Water Research. 42(13). 3379-3384. doi: https://doi.org/10.1016/j.watres.2008.04.021
Lamsal. R.. Walsh. M. E.. & Gagnon. G. A. (2011). Comparison of advanced oxidation processes for the removal of natural organic matter. Water Research. 45(10). 3263-3269. doi: https://doi.org/10.1016/j.watres.2011.03.038
Lee. N.. Amy. G.. Croué. J.-P.. & Buisson. H. (2004). Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Research. 38(20). 4511-4523. doi: https://doi.org/10.1016/j.watres.2004.08.013
Loupasaki. E.. & Diamadopoulos. E. (2013). Attached growth systems for wastewater treatment in small and rural communities: a review. Journal of Chemical Technology & Biotechnology. 88(2). 190-204. doi: doi:10.1002/jctb.3967
Michael-Kordatou. I.. Michael. C.. Duan. X.. He. X.. Dionysiou. D. D.. Mills. M. A.. & Fatta-Kassinos. D. (2015). Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications. Water Research. 77. 213-248. doi: https://doi.org/10.1016/j.watres.2015.03.011
Ng. C. Y.. Mohammad. A. W.. Ng. L. Y.. & Jahim. J. M. (2014). Membrane fouling mechanisms during ultrafiltration of skimmed coconut milk. Journal of Food Engineering. 142. 190-200. doi: https://doi.org/10.1016/j.jfoodeng.2014.06.005
Nguyen. S. T.. & Roddick. F. A. (2010). Effects of ozonation and biological activated carbon filtration on membrane fouling in ultrafiltration of an activated sludge effluent. Journal of Membrane Science. 363(1). 271-277. doi: https://doi.org/10.1016/j.memsci.2010.07.034
Oller. I.. Malato. S.. & Sánchez-Pérez. J. A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Science of The Total Environment. 409(20). 4141-4166. doi: https://doi.org/10.1016/j.scitotenv.2010.08.061
Park. H.-D.. Chang. I.-S.. & Lee. K.-J. (2015). Principles of membrane bioreactors for wastewater treatment. from http://www.crcnetbase.com/isbn/9781466590380
Pearce. G. K. (2011). UF/MF membrane water treatment : principles and design. Bangkok. Thailand: Water Treatment Academy.
Peleato. N. M.. Legge. R. L.. & Andrews. R. C. (2017). Characterization of UF foulants and fouling mechanisms when applying low in-line coagulant pre-treatment. Water Research. 126. 1-11. doi: https://doi.org/10.1016/j.watres.2017.08.064
Sarathy. S. R.. & Mohseni. M. (2007). The Impact of UV/H2O2 Advanced Oxidation on Molecular Size Distribution of Chromophoric Natural Organic Matter. Environmental Science & Technology. 41(24). 8315-8320. doi: 10.1021/es071602m
Shon. H. K.. Vigneswaran. S.. & Snyder. S. A. (2006). Effluent Organic Matter (EfOM) in Wastewater: Constituents. Effects. and Treatment. Critical Reviews in Environmental Science and Technology. 36(4). 327-374. doi: 10.1080/10643380600580011
Siembida-Lösch. B.. Anderson. W. B.. Wang. Y.. Bonsteel. J.. & Huck. P. M. (2015). Effect of ozone on biopolymers in biofiltration and ultrafiltration processes. Water Research. 70. 224-234. doi: https://doi.org/10.1016/j.watres.2014.11.047
Tian. J.. Wu. C.. Yu. H.. Gao. S.. Li. G.. Cui. F.. & Qu. F. (2018). Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water. Water Research. 132. 190-199. doi: https://doi.org/10.1016/j.watres.2018.01.005
Toor. R.. & Mohseni. M. (2007). UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere. 66(11). 2087-2095. doi: https://doi.org/10.1016/j.chemosphere.2006.09.043
Vakondios. N.. Koukouraki. E. E.. & Diamadopoulos. E. (2014). Effluent organic matter (EfOM) characterization by simultaneous measurement of proteins and humic matter. Water Research. 63. 62-70. doi: https://doi.org/10.1016/j.watres.2014.06.011
van den Berg. G. B.. & Smolders. C. A. (1990). Flux decline in ultrafiltration processes. Desalination. 77. 101-133. doi: https://doi.org/10.1016/0011-9164(90)85023-4
von Gunten. U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research. 37(7). 1443-1467. doi: https://doi.org/10.1016/S0043-1354(02)00457-8
Wang. H.. Park. M.. Liang. H.. Wu. S.. Lopez. I. J.. Ji. W.. Snyder. S. A. (2017). Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation. Water Research. 125. 42-51. doi: https://doi.org/10.1016/j.watres.2017.08.030
Wang. X.. Wang. J.. Li. K.. Zhang. H.. & Yang. M. (2018). Molecular characterization of effluent organic matter in secondary effluent and reclaimed water: Comparison to natural organic matter in source water. Journal of Environmental Sciences. 63. 140-146. doi: https://doi.org/10.1016/j.jes.2017.03.020
Yang. X.. Peng. J.. Chen. B.. Guo. W.. Liang. Y.. Liu. W.. & Liu. L. (2012). Effects of ozone and ozone/peroxide pretreatments on disinfection byproduct formation during subsequent chlorination and chloramination. Journal of Hazardous Materials. 239-240. 348-354. doi: https://doi.org/10.1016/j.jhazmat.2012.09.006
Yu. Y.. Feng. Y.. Qiu. L.. Han. W.. & Guan. L. (2008). Effect of grain-slag media for the treatment of wastewater in a biological aerated filter. Bioresource Technology. 99(10). 4120-4123. doi: https://doi.org/10.1016/j.biortech.2007.09.001
Zhang. Y.. Xue. J.. Liu. Y.. & Gamal El-Din. M. (2018). The role of ozone pretreatment on optimization of membrane bioreactor for treatment of oil sands process-affected water. Journal of Hazardous Materials. 347. 470-477. doi: https://doi.org/10.1016/j.jhazmat.2017.12.013
Zhao. H.-P.. Wang. Z.-F.. Chan. T.-C.. & Liu. Z.-Y. (2016). Design of regeneration recycling water networks by means of concentration potentials and a linear programming method. Journal of Cleaner Production. 112. 4667-4673. doi: https://doi.org/10.1016/j.jclepro.2015.07.130
Zheng. X. (2010). Major Organic Foulants in Ultrafiltration of Treated Domestic Wastewater and their Removal by Bio-filtration as Pre-treatment.
Zheng. X.. Ernst. M.. Huck. P. M.. & Jekel. M. (2010). Biopolymer fouling in dead-end ultrafiltration of treated domestic wastewater. Water Research. 44(18). 5212-5221. doi: https://doi.org/10.1016/j.watres.2010.06.039
Zheng. X.. Khan. M. T.. & Croué. J.-P. (2014). Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation. characterization. and fouling effect of EfOM fractions. Water Research. 65. 414-424. doi: https://doi.org/10.1016/j.watres.2014.07.039
Zheng. X.. Zietzschmann. F.. Plume. S.. Paar. H.. Ernst. M.. Wang. Z.. & Jekel. M. (2017). Understanding and Control of Biopolymer Fouling in Ultrafiltration of Different Water Types. 9(4). 298. doi: 10.3390/w9040298

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-02-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-02-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw