進階搜尋


下載電子全文  
系統識別號 U0026-1202201816122000
論文名稱(中文) 基於標準代碼之跨域統計資料整合與視覺化展示
論文名稱(英文) Cross-Domain Statistical Data Integration and Visualization Based on Standardized Codes
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 106
學期 1
出版年 107
研究生(中文) 楊靜岑
研究生(英文) Jing-Cen Yang
學號 P66044065
學位類別 碩士
語文別 中文
論文頁數 155頁
口試委員 指導教授-洪榮宏
口試委員-蔡博文
口試委員-江渾欽
中文關鍵字 跨領域  統計資料  標準化識別碼  視覺化展示 
英文關鍵字 Cross-Domain  Statistical Data  Standardized Codes  Visualization 
學科別分類
中文摘要 統計資料為各領域分析現實生活環境之基礎資料,隨著網路快速發展,促進了特定領域統計資料之資料流通有效機制,但如何整合來自不同領域的資料,克服異質性障礙仍是ㄧ大挑戰。地理資訊系統具有記錄資料時間與空間之能力,已被廣泛用於整合與應用各領域統計資料,但分析跨領域統計資料時若無法正確解讀其時空特性,很容易產生無意義或錯誤的分析成果與決策。為了促進資料互操作性之共享環境,本研究提出標準化統計指標描述框架輔助自動化解讀跨域統計資料之空間、時間與主題意涵,由於發展之標準化統計指標描述框架包含資料屬性與資料表之命名,因此識別跨域統計資料與查詢皆能以標準流程執行。有了此共識才得以建立組織間之跨域合作關係,實現跨域統計資料流通、共享與重複使用之目標。
針對跨領域統計資料之共享、整合與視覺化需求,本研究以標準化統計指標描述框架為基礎,發展整體之管理及轉換機制。除了透過標準化代碼直接查詢特定指標資料之外,本研究藉由鍊結相關統計指標、轉換現有之統計資料與預先定義之指標公式計算新的統計指標成果,進一步強化整體機制。這些擴展功能使使用者能充分運用現有資料,大幅減短資料處理時間,我們也以實際案例證明藉由該機制自動提供統計指標與領域專業知識能輔助決策判斷。視覺化方面,本研究針對多元指標資料之呈現提出多種視覺化設計策略滿足不同需求,以便依據選擇之統計指標提供正確且全面性之說明。
本研究利用標準化統計指標描述框架與相關機制達成跨域統計資料之正確性與互操作性之共享目標,相關規劃可在未來延伸發展於統計資料開放網路服務或資源描述架構之研究中,進一步提昇跨域統計資料整合之效益。
英文摘要 Statistical data serves as the foundation for professional domains to analyze and understand the reality. Despite the fast growth of recent internet technology has facilitated an effective mechanism for the exchange of domain-specific statistical data, how to organize data from different domains, conquer the heterogeneity barriers and derive correct strategies remains a great challenge. With its spatio-temporal modelling capability, GIS has been widely used in a variety of domains to enable the integration and application of multidisciplinary statistical data. However, analyzing cross-domain statistical data without a correct understanding about its spatio-temporal and thematic nature may easily lead to wrong or meaningless interpretation or decisions. To facilitate an interoperable sharing environment, this research first proposes a standardized identifier framework to aid the automatic interpretation of the spatial, temporal and thematic nature of cross-domain statistical data. As the proposed identifier framework is designed to serve the naming of both attributes and tables, the identification and query request of cross-domain statistical data can be easily executed in a consistent way. With such consensus agreement, the cross-domain partnership among participating organizations can be built for exchanging, sharing, and reuse cross-domain statistical data.
In response to the needs of sharing, integration and visualization of cross-domain statistical data, this research develops a management and transformation mechanism based on the standardized identifier framework. In addition to fulfilling the needs for direct data request via constraints built from standardized identifiers, we further enhance the mechanisms by adding the capabilities of linking related statistical data, transforming existing statistical data and calculating required outcome via pre-designed formula. These extended capabilities enable users to take full advantages of the existing data and tremendously reduce the time for processing data. By introducing the knowledge of statistical methods and domain demands, we also demonstrate the decision making process would become easier via the help of related statistical data automatically provided by the mechanism. In terms of visualization, we proposed a number of cartographic and UI strategies to address different needs for correctly and comprehensively illustrating the changing phenomena based on the selected statistical data.
This research has successfully demonstrated the correct and interoperable sharing of statistical data can be built upon the statistical identifier framework and associated mechanism. As statistical data will no doubt be collected and distributed by different stakeholders, the standardized design of this research has great potential to serve as the foundation for effectively linking the valuable domain-specific resources for better decision making in the future.
論文目次 摘要 I
誌謝 IX
表目錄 XII
圖目錄 XIV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目標 4
1.3 研究流程 9
1.4 論文架構 11
第二章 文獻回顧 12
2.1 跨領域統計資料之發展與應用 12
2.2 空間共同參考框架 31
2.3 統計資料之時空記錄方式 35
第三章 標準化統計指標描述框架 47
3.1 標準化指標記錄架構 48
3.2 強化指標設計與分析 65
3.3 指標資料處理機制 69
第四章 標準代碼轉換及統計資料展示 72
4.1 註冊機制 73
4.2 基於時序考量之標準代碼轉換 81
4.3 搜尋機制 83
4.4 統計地圖展示介面探討 96
第五章 實作分析 104
5.1 實作軟體環境與資料建置 104
5.2 實例測試 112
5.3 視覺化展示 136
第六章 結論與建議 146
參考文獻 149
參考文獻 內政部統計處.(2008). 統計區分類系統建置及應用.
Retrieved November 20, 2017, from https://www.moi.gov.tw/files/site_node_file/6263/%E7%B5%B1%E8%A8%88%E5%8D%80%E5%88%86%E9%A1%9E%E7%B3%BB%E7%B5%B1%E5%BB%BA%E7%BD%AE%E5%8F%8A%E6%87%89%E7%94%A8.pdf
內政部統計處.(2011). 「100 年國土資訊系統社會經濟資料庫擴建及共通平台推動計畫」委外服務案-成果報告書.
內政部統計處.(2016). 統計區分類系統資料標準第二版. Retrieved November 20, 2017, from https://standards.moi.gov.tw/3zqe#!NilPCmZUxBVjMyl5VAkpkeYh%2Bw
吳焄雯.(2015). 國土資訊系統社會經濟資料庫之推動與應用.國土及公共治理季刊, 3(1), 101-107.
周德芳.(2016). 基隆市住宅竊盜犯罪空間與區位分析. 臺北大學犯罪學研究所學位論文, 1-65.
林士裕.(2005). 開放式架構之網路主題地圖服務研究. 成功大學測量及空間資訊學系學位論文, 1-118.
林美君, 蘇明道, 蔡博文, 陳敬宏, & 劉惠玲.(2012). 統計區分類系統在洪災事件之人口暴露量推估. 農業工程學報, 58(3), 40-49.
洪榮宏, 廖向芃, 鄧岳荃, & 郭巧玲.(2007). 以開放式地理服務支援健康城市資料之空間分佈現象呈現. 健康城市學刊, (5), 59-69.
胡立諄, & 賴進貴.(2006). 臺灣女性癌症的空間分析. 台灣地理資訊學刊, (4),39-55
袁大鈺, & 唐牧群.(2010). 跨領域學術社群之智識網絡結構初探: 以臺灣科技與社會研究為例. 圖書資訊學刊, 8(2), 125-163.
張心玲.(2016). Open Data、Big Data 等資料經濟發展現況與趨勢探討.電工通訊季刊, 16-29.
曾雅萍, 林美君, & 蘇明道.(2014). 登革熱病例於統計區分類系統之熱源分析. 中國統計學報, 52(3), 379-396.
游豐吉, & 曾炳榮.(2017). 觀光開放資料統計地圖系統建置. 地理資訊系統季刊, 11(2), 7-11.
項靖, 陳曉慧, 楊東謀, 羅晉, 歐俐伶, 王珮玲, 蘭韻綺, 楊安祺, 郭又菁, 林彥宇, &李珮菱.(2015). 開放資料及其對政府治理與個人隱私影響之研究. 國家發展委員會委託研究報告.
黃楷齡.(2012). 結合知識與服務架構之統計地圖製作研究. 成功大學測量及空間資訊學系學位論文, 1-181.
勤業眾信.(2016). 行動醫療商機觀察從大數據應用及資訊安全看台灣發展契機. Retrieved November 3, 2017, from https://www2.deloitte.com/content/dam/Deloitte/tw/Documents/life-sciences-health-care/tw-2016mhealth-business.pdf
溫在弘, 劉擇昌, & 林民浩.(2010). 犯罪地圖繪製與熱區分析方法及其應用: 以 1998~ 2007 年台北市住宅竊盜犯罪為例. 地理研究, (52), 43-63.
廖勇柏, 陳建仁, 李文宗, & 徐書儀.(2003). 台灣地區癌症死亡率與發生率電子地圖的建構及使用. 臺灣公共衛生雜誌, 22(3), 227-236.
廖興中.(2014). 臺灣基層醫療缺乏區域界定之初探: 整合空間與非空間因素的分析. 行政暨政策學報, (58), 121-152.
歐采瑀.(2017). 由品質與空間統計觀點提升統計區資料之智慧分析與視覺化. 成功大學測量及空間資訊學系學位論文, 1-138.
顏貝珊, & 余清祥.(2010). 2010 年各國人口普查制度之研究. 人口學刊, (40), 203-229.
蘇郁婷.(2017). 品質感知賦能考量之互操作地理資訊系統設計. 成功大學測量及空間資訊學系學位論文, 1-152.
Blaschke, T., & Merschdorf, H.(2014). Geographic information science as a multidisciplinary and multiparadigmatic field. Cartography and Geographic Information Science, 41(3), 196-213.
Brewer, C. A.(2006). Basic mapping principles for visualizing cancer data using geographic information systems (GIS). American journal of preventive medicine, 30(2), S25-S36.
Brody, H., Rip, M. R., Vinten-Johansen, P., Paneth, N., & Rachman, S.(2000). Map-making and myth-making in Broad Street: the London cholera epidemic, 1854. The Lancet, 356(9223), 64-68.
Carbaugh, L. W., & Marx, R. W.(1990). The TIGER system: A Census Bureau innovation serving data analysts. Government information quarterly, 7(3), 285-306.
Centre for Epidemiology and Evidence.(2015). HealthStats NSW: Privacy Issues and the Reporting of Small Numbers. Retrieved November 20, 2017, from http://www.health.nsw.gov.au/hsnsw/Publications/privacy-small-numbers.pdf
Cope, M. A., & Pincetl, S.(2014). Confronting Standards and Nomenclature in Spatial Data Infrastructures: A Case Study of Urban Los Angeles County Geospatial Water Management Data. IJSDIR, 9, 36-58
Couclelis, H.(2003). The certainty of uncertainty: GIS and the limits of geographic knowledge. Transactions in GIS, 7(2), 165-175.
Gandomi, A., & Haider, M.(2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144.
Goodchild, M. F.(2009). Geographic information system. In Encyclopedia of Database Systems (pp. 1231-1236). Springer US.
Goodchild, M. F.(2010). Twenty years of progress: GIScience in 2010. Journal of spatial information science, 2010(1), 3-20.
ISO/TC154.(1988). ISO-8601: 1988 data elements and interchange formats – information interchange – representation of dates and times. Standard 8601:2004, International Oranization for Standardization
ISO/TC211.(2003). ISO-19112: 2003 Geographic Information-Spatial referencing by geographic identifiers. Standard 19112: 2003, International Oranization for Standardization
Jeefoo, P., Tripathi, N. K., & Souris, M.(2010). Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand. International journal of environmental research and public health, 8(1), 51-74.
Kong, N., Zhang, T., & Stonebraker, I.(2015). Evaluation of web GIS functionality in academic libraries. Applied Geography, 60, 288-293.
Krieger, N., Chen, J. T., Waterman, P. D., Soobader, M. J., Subramanian, S. V., & Carson, R.(2002). Geocoding and monitoring of US socioeconomic inequalities in mortality and cancer incidence: does the choice of area-based measure and geographic level matter? the Public Health Disparities Geocoding Project. American journal of epidemiology, 156(5), 471-482.
Laney, D.(2012). Deja VVVu: Others Claiming Gartner’s Construct for Big Data. Retrieved November 3, 2017, from https://blogs.gartner.com/doug-laney/deja-vvvue-others-claiming-gartners-volume-velocity-variety-construct-for-big-data
Luan, H., & Law, J.(2014). Web GIS-based public health surveillance systems: A systematic review. ISPRS International Journal of Geo-Information, 3(2), 481-506.
Mark, D. M.(2003). Geographic information science: Defining the field. Foundations of geographic information science, 1, 3-18.
Martin, D.(2002). Geography for the 2001 Census in England and Wales. Population Trends, 108(7), 7-15.
Mollalo, A., Blackburn, J. K., Morris, L. R., & Glass, G. E.(2017). A 24-year exploratory spatial data analysis of Lyme disease incidence rate in Connecticut, USA. Geospatial health, 12(2).
Mu, L., & Wang, F.(2008). A scale-space clustering method: Mitigating the effect of scale in the analysis of zone-based data. Annals of the Association of American Geographers, 98(1), 85-101.
Nelson, J. K., & Brewer, C. A.(2017). Evaluating data stability in aggregation structures across spatial scales: revisiting the modifiable areal unit problem. Cartography and Geographic Information Science, 44(1), 35-50.
OGC.(2006a). OpenGIS Web Map Service (WMS) Implementation Specification.
OGC.(2006b). OpenGIS Web Feature Service (WFS) Implementation.
Openshaw, S.(1984). The modifiable areal unit problem. Concepts and Techniques in Modern Geography, 38(41).
Openshaw, S.(1996). Developing GIS-relevant zone-based spatial analysis methods. Spatial analysis: modelling in a GIS environment, 55-73.
Openshaw, S., & Taylor, P. J.(1979). A million or so correlation coefficients: three experiments on the modifiable areal unit problem. Statistical applications in the spatial sciences, 21, 127-144.
Pickle, L. W., Mungiole, M., Jones, G. K., & White, A. A.(1999). Exploring spatial patterns of mortality: the new atlas of United States mortality. Statistics in Medicine, 18(23), 3211-3220.
Raos, R., & Janus, M.(2011). Examining spatial variations in the prevalence of mental health problems among 5-year-old children in Canada. Social Science & Medicine, 72(3), 383-388.
Richardson, D. B., Volkow, N. D., Kwan, M. P., Kaplan, R. M., Goodchild, M. F., & Croyle, R. T.(2013). Spatial turn in health research. Science, 339(6126), 1390-1392.
Sexton, K., Waller, L. A., McMaster, R. B., Maldonado, G., & Adgate, J. L.(2002). The importance of spatial effects for environmental health policy and research. Human and Ecological Risk Assessment, 8(1), 109-125.
Stillwell, J. (Ed.) .(2017). The Routledge Handbook of Census Resources, Methods and Applications: Unlocking the UK 2011 Census. Routledge.
Sui, D.(2014). Opportunities and impediments for open GIS. Transactions in GIS, 18(1), 1-24.
Swift, A., Liu, L., & Uber, J.(2008). Reducing MAUP bias of correlation statistics between water quality and GI illness. Computers, Environment and Urban Systems, 32(2), 134-148.
Trewin, D.(2006). Statistical Geography Volume 1—Australian Standard Geographical Classification (ASGC). Canberra: Australian Bureau of Statistics, 38-40.
Tsorlini, A., Sieber, R., Hurni, L., Klauser, H., & Gloor, T.(2017). Designing a Rule-based Wizard for Visualizing Statistical Data on Thematic Maps. Cartographic Perspectives, (86), 5-23.
Tuan Anh, N. G., P. T. Vinh, & H. K. Duy.(2012, August). A study on 4d gis spatio-temporal data model. In Knowledge and Systems Engineering (KSE), 2012 Fourth International Conference on (pp. 34-38). IEEE.
Yang, J.(2003). Web service componentization. Communications of the ACM, 46(10), 35-40.
Zheng, Y.(2015). Methodologies for cross-domain data fusion: An overview. IEEE transactions on big data, 1(1), 16-3
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-03-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-03-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw