進階搜尋


下載電子全文  
系統識別號 U0026-1202201513401100
論文名稱(中文) 應用陣列技術於聲場集中與語音訊號分離之研究
論文名稱(英文) Research on the Applications of Array Technology for Focusing of Sound Field and Separation of Audio Signals
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 103
學期 1
出版年 104
研究生(中文) 林聖哲
研究生(英文) Sheng-Che Lin
學號 p18981077
學位類別 博士
語文別 英文
論文頁數 75頁
口試委員 指導教授-涂季平
口試委員-李永春
口試委員-邱永盛
口試委員-陳永裕
口試委員-黃清哲
口試委員-鄭志鈞
口試委員-劉雲輝
中文關鍵字 超音波陣列  局部聲場重建  訊號分離  麥克風陣列  適應性時間反轉法 
英文關鍵字 ultrasonic emitter array  localized sound field reconstruction  signal separation  microphone array  adaptive time reversal method 
學科別分類
中文摘要 本研究主軸為利用發射陣列與接收陣列,針對聲場集中與聲音訊號分離這兩項目標,搭配兩套不同演算法系統,分別為傳聲與訊號分離。第一套傳聲演算法系統,是根據超音波互擾特性,與人耳對能量較高的音頻感覺較敏感的遮蔽效應。利用超音波陣列,將不同頻率的超音波訊號,經過傳聲演算法最佳化程序,發射至空間中之特定位置或小區域上,並使不同頻率之超音波訊號在特定位置上因互擾而產生聲音,進而達成獨創性的定位區域傳音的效果。而第二套聲音訊號分離演算法系統,則是利用以適應性時間反轉法為理論基礎,建立一種多聲源語音訊號分離技術,還原使用者語音訊號。並同時消除背景噪音,提供高訊雜比與高相關度之語音訊號。在目標聲源及噪音聲源與接收陣列間之環境響應函數皆已知的條件下,適應性時間反轉法具有同時還原目標聲源訊號及消除噪音聲源訊號的優點。利用數值模擬與實際測試,驗證這兩套演算法系統的效果。不論傳遞或分離聲音訊號,皆可達到具體目標與成果。
英文摘要 The aim of this research is to develop two algorithms of systems that apply on localized sound field reconstruction and sound signal separation. Those are the sound transmission system and signal separation system. The first system is to transmit sound signal by using ultrasonic emitter array. In this system, two plane waves of differing frequencies are generated by ultrasonic emitter array, when traveling in the same direction, two new waves, one of which has a frequency equal to the sum of the original two frequencies and the other equals to the difference frequency. For human physiology, human ear can nominally hear sound in the range 20 Hz to 20 kHz. Therefore, only the difference frequency which is in the audible frequency range can be heard at the specific location.
The second system is to separate sound signal by using microphone array and an algorithm, which theory of the system is based on adaptive time-reversal method (ATRM). The advantage of signal separation system can reconstruct target signal, it also can cancel noise signals simultaneously if impulse response functions of environment between target source, noise sources, and microphone array are known. The correlation coefficient and signal to noise ratio (SNR) are implemented as indicators to evaluate the performances of this research. The results of simulations and experiments are done to confirm the effects of two algorithms of systems for focusing sound transmission and sound signal separation.
論文目次 中文摘要 i
ABSTRACT ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENS iv
LIST OF TABLES vi
LIST OF FIGURES vii
1. INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Literature Review 2
1.3 Research Organization 5
2. THE THEORY OF SOUND TRANSMISSION SYSTEM 8
2.1 Theory of Nonlinear Interaction 8
2.2 The Effects of Parameters in Simulations 10
3. THE EXPERIMENTS FOR SOUND TRANSMISSION SYSTEM 19
3.1 The Test for Nonlinear Interaction of Sound Waves 19
3.2 Radius of Focusing for Ultrasonic Array 19
3.3 The Comparison of Ultrasonic Array between Two Alternative Methods 20
3.3.1. Case 1: Phase Modulation (PM) 20
3.3.2. Case 2: Difference Frequency (DF) from the Present Study 21
4. THE THEORY OF SOUND SIGNAL SEPARATION SYSTEM 33
4.1 Theory of TRM 34
4.2 Theory of ATRM 35
4.3 Numerical Simulations for TRM and ATRM 39
4.3.1. Analysis of correlation coefficient 39
4.3.2. Analysis of signal to noise ratio (SNR) 40
5. THE EXPERIMENTS FOR SOUND SIGNAL SEPARATION SYSTEM 45
5.1 The Process of Computing Impulse Response Function 45
5.2 The Results of Experiments 46
5.2.1. Case 1: the efficiency of TRM and ATRM (semi-anechoic room) 46
5.2.2. Case 2: the efficiency of TRM and ATRM (conference room) 47
5.2.3. Case 3: the real time testing of signal separation (ATRM) 48
6. DISCUSSIONS AND CONCLUSIONS 69
6.1 The Conclusions for Sound Transmission System 69
6.2 The Conclusions for Sound Signal Separation System 69
6.3 Future Works 70
REFERENCES 72
參考文獻 [1] Soundtube, http://www.soundtube.com/
[2] HoloSonics, “Audio Spotlight” http://www.holosonics.com/
[3] U. Ingard and D. C. Pridmore-Brown, Scattering of sound by sound, J. Acoust. Soc. Am. 28, pp. 367-369 (1956).
[4] L. W. Dean, Interactions between sound waves, J. Acoust. Soc. Am. 34, pp. 1039-1044 (1962).
[5] P. J. Westervelt, Parametric acoustic array, J. Acoust. Soc. Am. 35, pp. 535-537 (1963).
[6] V. P. Kuznetsov, Equations of nonlinear acoustic, Sov. Phys. Acoust. 16, pp. 467-470 (1971).
[7] M. B. Bennett and D. T. Blackstock, Parametric array in air, J. Acoust. Soc. Am. 57, pp. 562-568 (1975).
[8] M. Yoneyama, J. I. Fugimoto, Y. Kawamo and S. Sasabe, The audio spotlight: an application of nonlinear interaction of sound waves to a new type of loudspeaker design, J. Acoust. Soc. Am. 73, pp. 1532-1536 (1983).
[9] F. J. Pompei, The use of airborne ultrasonics for generating audible sound beams, J. Audio Eng. Soc. 47, pp. 726-731 (1999).
[10] M. Vila, F. Vander Meulen, S. Dos Santos, L. Haumesser and O. Bou Matar, Contact phase modulation method for acoustic nonlinear parameter measurement in solid, Ultrasonics 42, pp. 1061-1065 (2004).
[11] J. W. Choi and Y. H. Kim, Generation of an acoustically bright zone with an illuminated region using multiple sources, J. Acoust. Soc. Am. 111, pp. 1695-1700 (2002).
[12] C. H. Lee, J. H. Chang, J. Y. Park and Y. H. Kim, Personal monitor & TV audio system by using loudspeaker array, Korean Society for Noise and Vibration Engineering, 17, pp. 701-710 (2008).
[13] J. Y. Park, J. H. Chang, Y. H. Kim and Y. Park, Personal stereophonic system using loudspeakers: feasibility study, International Conference on Control, Automation and Systems, in Korea (2008).
[14] J. H. Chang, C. H. Lee, J. Y. Park and Y. H. Kim, A realization of sound focused personal audio system using acoustic contrast control, J. Acoust. Soc. Am. 125, pp. 2091–2097 (2009).
[15] H. H. Huang, Research on focusing of sound field energy by acoustic contrast control method, National Chang Kung University Dissertations (2010).
[16] Y. T. Chen, Research on effect of multiple focusing points sound transmission by using a speaker array, National Chang Kung University Dissertations (2014).
[17] M. Fink, C. Prada, F. Wu and D. Cassereau, Self-focusing with time reversal mirror in inhomogeneous media, IEEE Ultrasonics Symposium 2, pp. 681-686 (1989).
[18] D. R. Jackson and D. R. Dowling, Phase conjugation in underwater acoustics, J. Acoust. Soc. Am. 89, pp. 171-181 (1991).
[19] M. Fink, Time reversal of ultrasonic fields. I. Basic principles, IEEE Trans. UFFC 39, pp. 555-566 (1992).
[20] F. Wu, J. L. Thomas and M. Fink, Time reversal of ultrasonic fields. II. Experimental results,” IEEE Trans. UFFC 39, pp. 567-578 (1992).
[21] D. Cassereau and M. Fink, Time-reversal of ultrasonic fields. III. Theory of the closed time-reversal cavity, IEEE Trans. UFFC 39, pp. 579-592 (1992).
[22] M. Fink, Time-reversal mirrors, J. Phys. D 26, pp. 1330-1350 (1993).
[23] W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla and D. R. Jackson, Phase conjugation in the ocean: experimental demonstratin of an acoustic time reversal mirror, J. Acoust. Soc. Am. 103, pp. 25-40 (1998).
[24] R. K. Ing and M. Fink, Time recompression of dispersive lamb waves using a time reversal mirror-application to flaw detection in thin plates, IEEE Ultrasonics Symposium 1, pp. 659-663 (1996).
[25] M. R. Dungan and D. R. Dowling, Computed narrow-band time-reversing array retrofocusing in a dynamic shallow ocean, J. Acoust. Soc. Am. 107, pp. 3101-3112 (2000).
[26] M. R. Dungan and D. R. Dowling, Computed narrow-band azimuthal time-reversing array retrofocusing in shallow water, J. Acoust. Soc. Am. 110, pp. 1931-1942 (2001).
[27] K. G. Sabra and D. R. Dowling, Broadband performance of a time reversing array with a moving source, J. Acoust. Soc. Am. 115, pp. 2807-2817 (2004).
[28] K. G. Sabra, P. Roux, H. C. Song, W. S. Hodgkiss, W. A. Kuperman, T. Akal and J. M. Stevenson, Experimental demonstration of iterative time-reversed reverberation focusing in a rough waveguide. Application to target detection, J. Acoust. Soc. Am. 120, pp. 1305-1314 (2006).
[29] M. Tanter, J. L. Thomas and M. Fink, Time reversal and the inverse filter, J. Acoust. Soc. Am. 108, pp. 223-234 (2000).
[30] G. Montaldo, M. Tanter and M. Fink, Real time inverse filter focusing through iterative time reversal, J. Acoust. Soc. Am. 115, pp. 768–775 (2004).
[31] B. S. Cazzolato, P. Nelson, P. Joseph and R. J. Brind, Numerical simulation of optimal deconvolution in a shallow-water environment, J. Acoust. Soc. Am. 110, pp. 170–185 (2001).
[32] P. A. Nelson and S. H. Yoon, Estimation of acoustic source strength by inverse methods: Part I, conditioning of the inverse problem, J. Sound Vib. 233, pp. 639-664 (2000).
[33] S. H. Yoon, P. A. Nelson, Estimation of acoustic source strength by inverse methods: Part II, experimental investigation of methods for choosing regularization parameters, J. Sound Vib. 233, pp. 665-701 (2000).
[34] Y. Kim and P. A. Nelson, Optimal regularization for acoustic source reconstruction by inverse methods, J. Sound Vib. 275, pp. 463-487 (2004).
[35] B. H. Wu, G. P. Too and S. Lee, Audio signal separation via a combination procedure of time-reversal and deconvolution process, MSSP 24, pp. 1431-1443 (2010).
[36] Y. H. Hsieh and G. P. Too, Analysis of alternative methods for impulse response functions based on signal-to-noise ratio enhancement and completeness of source signal reconstruction using passive time reversal, J. Comp. Acoust. 21, 1350008-1 - 1350008-31 (2013).
[37] H. Cox, R. M. Zeskind and M. M. Owen, Robust adaptive beamforming, IEEE T. Acoust. Speech 35, pp. 1365-1376 (1987).
[38] B. D. Van Veen and K. M. Buckley, Beamforming: a versatile approach to spatial filtering, IEEE ASSP Magazine 5, pp. 4-24 (1988).
[39] H. L. Van Trees, Optimum Array Processing, Wiley, New York, Unite State, pp. 440-444 (2002).
[40] M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics, first ed., Academic Press (1997).
[41] S. Wu and N. Zhu, Locating arbitrarily time-dependent sound sources in three dimensional space in real time, J. Acoust. Soc. Am. 128, pp. 728-739 (2010).
[42] S. C. Lin, G. P. Too and M. C. Lu, A localized sound field reconstruction system by use of ultrasonic wave, Sensors and Actuators A 201, pp. 407-415 (2013).
[43] S. C. Lin and G. P. Too, Application of array microphone measurement for the enhancement of sound quality by use of adaptive time reversal method, Sensors and Actuators A 218, pp. 1-9 (2014).
[44] T. G. Muir and J. G. Willete, Parametric acoustic transmitting arrays, J. Audio Eng. Soc. 52, pp. 1481-1486 (1972).
[45] M. B. Moffett and R. H. Mellen, Model for parametric acoustic sources, J. Acoust. Soc. Am. 61, pp. 325-337 (1977).
[46] J. G. Willette and M. B. Moffett, Harmonics of the difference frequency in saturation-limited parametric sources, J. Acoust. Soc. Am. 62, pp. 1377-1381 (1977).
[47] K. Aoki, T. Kamakura and Y. Kumamoto, Parametric loudspeaker: characteristics of acoustic field and suitable modulation of carrier ultrasound, Electron. Commun. Jpn. 74, pp. 76-82 (1991).
[48] M. D. Cahill and A. C. Baker, Numerical simulation of the acoustic field of a phased-array medical ultrasound scanner, J. Acoust. Soc. Am. 104, pp. 1274-1283 (1998).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-02-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-02-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw