進階搜尋


 
系統識別號 U0026-1202201417064900
論文名稱(中文) 建立台灣半動態基準之水平速度模型
論文名稱(英文) Establishing a Horizontal Velocity Model for a Semi-dynamic Datum of Taiwan
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 102
學期 1
出版年 103
研究生(中文) 郭徐伸
研究生(英文) Syu-Shen Kuo
學號 P66001067
學位類別 碩士
語文別 中文
論文頁數 89頁
口試委員 指導教授-楊名
口試委員-陳國華
口試委員-景國恩
中文關鍵字 大地基準  速度模型  半動態基準 
英文關鍵字 geodetic datum  velocity model  semi-dynamic datum 
學科別分類
中文摘要 台灣位於菲律賓海板塊與歐亞板塊的交界,兩個板塊的相互擠壓作用造成全區發生非均勻的地表變形,另一方面,台灣現行的大地基準TWD97[2010]是一個靜態的大地基準,控制點的坐標成果一經公告後便不會改變。因此,基本控制點間的相對精度會隨著時間而下降,進而造成TWD97[2010]失去其原有的精確度。與台灣同樣位處板塊交界之美國、紐西蘭及日本等國,長期亦受到板塊運動引起非均勻地表變形之影響,分別採用了在原有的靜態大地基準中加入區域地表變形模型的半動態基準概念,以維持大地基準的精確性。因此,本研究採用1110個台灣現有GPS觀測站之水平速度資料,應用克立金法將縱谷兩側分開內插,據此建立台灣半動態基準之水平速度模型,並對模型進行精度檢核及半動態基準作法分析。研究成果顯示,本研究建立之水平速度模型,其整體精度於東西方向為±2.4 mm/year,於南北方向為±1.8 mm/year,且相較於美國、紐西蘭速度模型之精度檢核成果,無論在東西或南北方向,相差皆未超過±1.0 mm/year。但是,速度模型之精度在空間上是不均勻的,其在北部及中部地區精度最高,西南部次之,在東部及山區精度最低。而以速度模型進行半動態基準作法,能夠達到維持控制點間相對精度之目的。
英文摘要 Taiwan is located at the plate boundary between the Eurasian plate and Philippine Sea plate. There is significant crustal deformation due to the collision between plates. However, current geodetic datum of Taiwan is a static geocentric datum, in which coordinates of control points are held fixed. Therefore, relative accuracy between control points decreases with time. The objective of this research is establishing a horizontal velocity model into the original static datum let it can be semi-dynamic datum. We use velocity field from 1110 Global Positioning System (GPS) stations and Kriging method to establish a horizontal velocity model. In the external validation of velocity model, the RMS residual were 2.4 mm/year for the east and 1.8 mm/year for the north components. The accuracy result is close to the accuracy of western contiguous United States (CONUNS) and New Zealand velocity model. However, the accuracy of velocity model is not consistent at different districts, it is highest in central and northern Taiwan, lower in southwestern Taiwan, and lowest in eastern Taiwan. Assuming no large deformation event (ex. earthquake), adopting the velocity model to implement semi-dynamic datum can effectively maintain relative accuracy between control points.
論文目次 摘要 I
ABSTRACT II
誌謝 VI
目錄 VIII
表目錄 XI
圖目錄 XII
第一章 緒論 1
1.1 文獻回顧 1
1.2 研究動機與目的 6
1.3 研究流程與方法 6
第二章 大地基準與變形模型 9
2.1 大地基準 9
2.1.1 國際地球參考框架ITRF 9
2.1.2 台灣現行之大地基準 12
2.1.3 靜態、動態及半動態大地基準 16
2.2 變形模型 19
2.2.1 地表變形之型態 19
2.2.2 變形模型之架構 20
2.3 各國之大地基準與速度模型 23
2.3.1 美國之大地基準與速度模型 23
2.3.2 紐西蘭之大地基準與速度模型 29
2.3.3 美國與紐西蘭速度模型比較 37
第三章 研究方法 40
3.1 塊體劃分 40
3.2 克立金法 45
3.2.1 區域化變數理論 45
3.2.2 半變異圖 47
3.2.3 一般克立金法 50
3.3 雙線性內插法 52
第四章 資料處理 54
4.1 研究資料介紹 54
4.2 研究資料處理 58
第五章 水平速度模型建立與分析 67
5.1 水平速度模型建立 67
5.2 外部精度檢核 69
5.3 水平速度模型用於半動態基準之作法分析 77
第六章 結論與建議 82
參考文獻 84
參考文獻 林文勇、劉志忠、劉正倫 (2012) 臺灣大地基準之一九九七坐標系統2010年成果,中華民國地籍測量學會會刊,第31卷,第3期,1–16頁。
胡植慶、劉啟清、饒瑞鈞 (2012) 斷層活動性觀測研究第二階段:斷層監測與潛勢分析研究(4/4),經濟部中央地質調查所報告,第101-05號,共396頁。
Altamimi, Z., Collilieux, X., Métivier, L. (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame, Journal of Geodesy, 85(8):457–473.
Angelier, J., Chu, H.T., Lee, J.C. (1997) Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274(1-3):117–143.
Angelier, J., Chu, H.T., Lee, J.C., Hu, J.C. (2000) Active faulting and earthquake hazard: The case study of the Chihshang Fault, Taiwan. Journal of Geodynamics, 29(3-5):151–185.
Beavan, J., Haines, J. (2001) Contemporary horizontal velocity and strain-rate fields of the Pacific-Australian plate boundary zone through New Zealand. Journal of Geophysical Research, 106(B1):741–770.
Beavan, J., Blick, G. (2005) Limitations in the NZGD2000 deformation model. In: Proceeding of the International Association of Geodesy Symposia vol. 130: Dynamic Planet, 22–26 August 2005, Cairns, Australia, 624–630.
Beavan, J. (2008) Consultancy services for coordinates for PositioNZonLine, Phase 2 (PONL-02). GNS Science Consultancy Report 2008/136, GNS Science, Lower Hutt, New Zealand.
Blick, G., Crook, C., Grant, D., Beavan, J. (2003) Implementation of a Semi-Dynamic Datum for New Zealand. In: Proceeding of the International Association of Geodesy Symposia vol. 128: A Window on the Future of Geodesy, June 30 – July 11, 2003, Sapporo, Japan, 38–43.
Bourne, S.J., England, P.C., Parsons, B. (1998) The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature, 391(6668):655–659.
Ching, K.E., Rau, R.J., Johnson, K.M., Lee, J.C. Hu, J.C., (2011) Present-day kinematics of active mountain building in Taiwan from GPS observations during 1995-2005. Journal of Geophysical Research, 116(B09405), doi: 10.1029/2010JB008058 .
Chlieh, M., de Chabalier, J.B., Ruegg, J.C., Armijo, R., Dmowska, R., Campos, J., Feigl K.L. (2004) Crustal deformation and fault slip during the seismic cycle in the north Chile subduction zone, from GPS and InSAR observations. Geophysical Journal International, 158(2):695–711.
Goovaerts, P. (1997) Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, U.S.A.
Grant, D.B., Blick, G.H. (1998) A new geocentric datum for New Zealand. New Zealand Surveyor, 288:40-42.
Grant, D.B., Blick, G.H., Pearse, M.B., Beavan, R.J., Morgan, P.J. (1999) The development and implementation of New Zealand Geodetic Datum 2000. Presented at International Union of Geodesy and Geophysics, July 19–30, 1999, Birmingham, United Kingdom.
Hsu, Y.J., Yu, S.B., Simons, M., Kuo, L.C., Chen, H.Y. (2009) Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18.
Jordan, A., Denys, P., Blick, G. (2005) Implementing Localised Deformation Models into a Semi-Dynamic Datum. In: Proceeding of the International Association of Geodesy Symposia vol. 130: Dynamic Planet, 22–26 August 2005, Cairns, Australia, 631–637.
Lee, J.C., Angelier, J., Chu, H.T., Hu, J.C., Jeng, F.S., Rau, R.J. (2003) Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001. Journal of Geophysical Research, 108(B11), doi: 10.1029/2003JB002394.
McCaffrey, R. (2002) Crustal block rotations and plate coupling. In Plate Boundary Zones, Geodynamics Series, vol. 30, American Geophysical Union, 101–122.
McCaffrey, R. (2005) Block kinematics of the Pacific/North Americaplate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data. Journal of Geophysical Research, 110(B7), doi: 10.1029/2004JB003307.
McCaffrey, R., Qamar, A., King, R., Wells, R., Khazaradze, G., Williams, C., Stevens, C., Vollick, J., Zwick, P. (2007) Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophys. Geophysical Journal International, 169(3):1315–1340.
McCarthy, D.D., Petit, G. (2004) IERS Conventions (2003). IERS Technical Note 32, Frankfurt am Main, Germany.
Murray-Moraleda, J. (2009) GPS: Applications in Crustal Deformation Monitoring. In Extreme Environmental Events, Springer New York, 4249–4283.
Nur, A., and Mavko, G. (1974) Post-seismic viscoelastic rebound. Science, 183(4121):204-206.
Office of the Surveyor-General (1998) A Proposal for Geodetic Datum Development. OSG Technical Report 2, Land Information New Zealand, Wellington, New Zealand.
Office of the Surveyor-General (2000) Realisation of the New Zealand Geodetic Datum 2000. OSG Technical Report 5, Land Information New Zealand, Wellington, New Zealand.
Office of the Surveyor-General (2003a) New Zealand geodetic operations 1999-2002. OSG Technical Report 18, Land Information New Zealand, Wellington, New Zealand.
Office of the Surveyor-General (2003b) Implementation of a Deformation Model for NZGD2000. OSG Technical Report 20, Land Information New Zealand, Wellington, New Zealand.
Pearson, C., McCaffrey, R., Elliott, J., Snay, R. (2010) HTDP 3.0: Software for Coping with the Coordinate Changes Associated with Crustal Motion. Journal of Surveying Engineering, 136(2):80–90.
Pearson, C., Snay, R. (2012) Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames. GPS Solutions, 17(1):1–15.
Peltzer, G., Rosen, P., Rogez, F., Hudnut, K. (1996) Postseismic rebound in fault step-overs caused by pore fluid flow. Science, 273(5279):1202–1206.
Petit, G., Luzum, B. (2010) IERS Conventions (2010). IERS Technical Note 36, Frankfurt am Main, Germany.
Roeloffs, E. (1996) Poroelastic techniques in the study of earthquake-related hydrological phenomena. Advances in geophysics, 37:135–195.
Schwarz, C.R., Wade, E.B. (1990) The North American Datum of 1983: Project Methodology and Execution. Bulletin Geodesique, 64(1): 28–62.
Snay, R.A. (1999) Using the HTDP software to transform spatial coordinates across time and between reference frames. Surveying and Land Information Systems, 59(1):15–25.
Snay, R.A., Soler, T. (2000) Modern terrestrial reference systems, Part 2: The evolution of NAD 83. Professional Surveyor, 20(2):16–18.
Snay, R.A. (2003) Introducing two spatial reference frames for regions of the Pacific Ocean. Surveying and Land Information Science, 63(1):5–12.
Stein, M.L. (1999) Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York, U.S.A.
Tanaka, Y., Saita, H., Sugawara, J., Iwata, K., Toyoda, T., Hirai, H., Kawaguchi, T., Matsuzaka, S. (2007) Efficient maintenance of the Japanese geodetic datum 2000 using crustal deformation models – PatchJGD & semi-dynamic datum. Bulletin of the Geographical Survey Institute, 54(2):49–59.
Thatcher, W., Rundle J.B. (1984) A viscoelastic coupling model for the cyclic deformation due to periodically repeated earthquakes at subduction zones. Journal of Geophysical Research, 89(B9):7631–7640.
Tregoning, P., Jackson, R. (1999) The need for dynamic datums. Geomatics Research Australasia, 71:87–102.
Tse, S.T., Rice, J.R. (1986) Crustal earthquake instability in relation to the depth variation of frictional slip properties. Journal of Geophysical Research, 91(B9):9452–9472.
Wackernagel, H. (2003) Multivariate Geostatistics: An Introduction with Applications. Springer, Berlin, Germany.
Wdowinski, S., Bock, Y., Zhang, J., Fang, P., Genrich, J. (1997) Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by 1992 landers earthquake. Journal of Geophysical Research, 102(B8):18057–18070.
Wolf, P.R., Dewitt, B.A. (2004) Elements of photogrammetry with applications in GIS. McGraw-Hill, New York, U.S.A.
Yang, M., Tseng, C.L., Yu, J.Y. (2001) Establishment and maintenance of Taiwan geodetic datum 1997. Journal of Surveying Engineering, 127(4):119–132.
Yu, S.B., Chen, H.Y., Kuo, L.C. (1997) Velocity field of GPS Stations in the Taiwan area. Tectonophysics, 274(1-3):41–59.
Yu, S.B., Kuo, L.C. (2001) Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333(1-2):199–217.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-02-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-02-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw