系統識別號 U0026-1201201700464900
論文名稱(中文) 發展以離子液體為基材之固相合成法來製備細菌細胞壁之肽聚醣類分子
論文名稱(英文) Ionic Liquid-Supported Synthesis of Bacterial Peptidoglycan Analogues
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 104
學期 2
出版年 105
研究生(中文) 徐崇桓
研究生(英文) Chung-Huan Hsu
學號 L36031097
學位類別 碩士
語文別 英文
論文頁數 167頁
口試委員 指導教授-鄭偉杰
中文關鍵字 離子液體  細菌細胞壁  肽聚醣類似物  磷酸化  醣基化 
英文關鍵字 Ionic Liquid  Bacterial Cell Wall  Peptidoglycan Analogues  Phosphorylation  Glycosylation 
中文摘要 細菌細胞壁是維持細菌細胞的形狀以及對抗滲透壓重要的結構,而其組成成分為肽聚醣,在肽聚醣中有著許多獨特且結構複雜的生物分子,這些分子富含生物應用的潛力,像是對抗細菌或是自體免疫的研究。然而,現在由天然物純化得到這些分子或是再直接對這些分子修飾結構仍有困難。因此,就化學家而言,發展新的方法對於收集或製備有系統的肽聚醣類分子是很重要的任務。在這份論文中,分為三個部分來研究:(a) 開發藉由離子液體基材的固相合成法來製備含磷官能基的肽聚醣分子之合成路徑,(b) 開發藉由離子液體基材的固相合成法來製備肽聚醣分子中的糖鏈結構之合成路徑,(c) 離子液體基材的發展。經由我們的努力,我們成功展示了新的離子液體基材,在於合成上,這些新基材將可帶來更加便利的應用。除此之外,我們成功發展了以離子液體基材的固相合成法來製備含磷中間物的合成路徑,對於製備含有焦磷酸官能基的肽聚醣前驅物而言,這是個關鍵的中間物。再加上我們找到適當的以離子液體基材的固相合成法來進行醣基化反應的適當條件,這對於使用離子液體來建構肽聚醣前驅物分子中的糖鏈是一大進展。我們相信由這份研究中所得到的結果,藉由離子液體基材的固相合成法可以加快合成肽聚醣前驅物分子的進度。
英文摘要 In the bacterial peptidoglycan (PGN), there are lots of unique and structurally complex biologically interesting molecules. However, it is still difficult to purify them from natural sources and directly modify them from these isolated molecules.
Thus, development of new methods for preparation structurally diverse PGN analogues is an important task to chemists. In this work, there are three parts: (a) development of IL-supported synthetic routes for preparation of peptidoglycans with a phosphate moiety (b) discovery of IL-supported synthesis for preparation of glycan chains of PGN, (c) development of ionic liquid matrixes. Through our efforts, we have we have successfully developed two methods to prepared the IL-supported intermediate bearing a phosphate at the reducing end of saccharides. It is a pivotal intermediate that allows us for further construction of a pyrophosphate synthesis. In addition, we have demonstrated new IL-matrixes, which might be more convenient for IL-supported synthesis. We believe our developed conditions can accelerate the progress of IL-supported peptidoglycan synthesis in the future.
論文目次 Contents
中文摘要........ I
Index of Figures........V
Index of Tables........VI
Index of Schemes........VII
Chapter 1 . Introduction........1
1.1 Introduction of bacterial peptidoglycan........1
1.2 Biosynthesis of bacterial cell wall........2
1.3 Previous work in our laboratory........3
1.4 Matrix-supported synthesis of PGN fragments........3
1.5 IL-support synthesis of PGN fragments........5
1.6 Motivation........6
Chapter 2 . Results and Discussion........7
2.1. Development of IL-supported synthetic routes for preparation of peptidoglycans with a phosphate moiety........7
2.2. Discovery of IL-supported synthesis for preparation of glycan chains........20
2.3 Developing new ionic liquid matrix........24
2.4 Future work........32
2.5 Conclusions........36
Chapter 3 . Experimental Section........37
3.1 General experimental procedure........37
3.2 Procedures and experimental data........38
參考文獻 1. Adam, A.; Petit, J. F.; Wietzerbin-Falszpan, J.; Sinay, P.; Thomas, D. W.; Lederer, E., L'acide N-glycolyl-muramique, constituant des parois de Mycobacterium smegmatis: Identification par spectrometrie de masse. FEBS Lett. 1969, 4, 87-92.
2. Raymond, J. B.; Mahapatra, S.; Crick, D. C.; Pavelka, M. S., Jr., Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. J. Biol. Chem. 2005, 280, 326-333.
3. Mahapatra, S.; Scherman, H.; Brennan, P. J.; Crick, D. C., N-Glycolylation of the nucleotide precursors of peptidoglycan biosynthesis of Mycobacterium spp. is altered by drug treatment. J. Bacteriol. 2005, 18, 2341-2347.
4. Chen, K. T.; Huang, D. Y.; Chiu, C. H.; Lin, W. W.; Liang, P. H.; Cheng, W. C., Synthesis of Diverse N-Substituted Muramyl Dipeptide Derivatives and Their Use in a Study of Human NOD2 Stimulation Activity. Eur. J. Org. Chem. 2015, 21, 11984-11988.
5. Breukink, E.; de Kruijff, B., Lipid II as a target for antibiotics. Nat. Rev. Drug Discov. 2006, 5, 321-323.
6. Meng, F.-C.; Chen, K.-T.; Huang, L.-Y.; Shih, H.-W.; Chang, H.-H.; Nien, F.-Y.; Liang, P.-H.; Cheng, T.-J. R.; Wong, C.-H.; Cheng, W.-C., Total Synthesis of Polyprenyl N-Glycolyl Lipid II as a Mycobacterial Transglycosylase Substrate. Organic Letters 2011, 13, 5306-5309.
7. Shih, H.-W.; Chen, K.-T.; Cheng, T.-J. R.; Wong, C.-H.; Cheng, W.-C., A New Synthetic Approach toward Bacterial Transglycosylase Substrates, Lipid II and Lipid IV. Organic Letters 2011, 13, 4600-4603.
8. Chen, K. T.; Kuan, Y. C.; Fu, W. C.; Liang, P. H.; Cheng, T. J.; Wong, C. H.; Cheng, W. C., Rapid preparation of mycobacterium N-glycolyl Lipid I and Lipid II derivatives: a biocatalytic approach. Eur. J. Org. Chem. 2013, 19, 834-838.
9. Mitachi, K.; Mohan, P.; Siricilla, S.; Kurosu, M., One-pot protection-glycosylation reactions for synthesis of lipid II analogues. Eur. J. Org. Chem. 2014, 20, 4554-4558.
10. Kadonaga, Y.; Wang, N.; Fujimoto, Y.; Fukase, K., Solid-phase Synthesis of Bacterial Cell Wall Peptidoglycan Fragments. Chemistry Letters 2014, 43, 1461-1463.
11. Miao, W.; Chan, T. H., Ionic-Liquid-Supported Synthesis:  A Novel Liquid-Phase Strategy for Organic Synthesis. Accounts of Chemical Research 2006, 39 (12), 897-908.
12. Huo, C.; Chan, T. H., A novel liquid-phase strategy for organic synthesis using organic ions as soluble supports. Chem Soc Rev. 2010, 39, 2977-3006.
13. Ma, Q.; Sun, S.; Meng, X. B.; Li, Q.; Li, S. C.; Li, Z. J., Assembly of homolinear alpha(1-->2)-linked nonamannoside on ionic liquid support. J. Org. Chem. 2011, 76, 5652-5660.
14. Chiappe, C.; Pieraccini, D., Ionic liquids: solvent properties and organic reactivity. Journal of Physical Organic Chemistry 2005, 18, 275-297.
15. He, X.; Chan, T. H., Structurally Defined Imidazolium-Type Ionic Oligomers as Soluble/Solid Support for Peptide Synthesis. Organic Letters 2007, 9, 2681-2684.
16. Bazureau, J.; Mongin, F.; Debdab, M., Ionic-Liquid-Supported Synthesis of Amines and Derivatives. Synthesis, 2006, 23, 4046-4052.
17. Bellina, F.; Bertoli, A.; Melai, B.; Scalesse, F.; Signori, F.; Chiappe, C., Synthesis and properties of glycerylimidazolium based ionic liquids: a promising class of task-specific ionic liquids. Green Chemistry 2009, 11, 622-626.
18. Despras, G.; Alix, A.; Urban, D.; Vauzeilles, B.; Beau, J. M., From chitin to bioactive chitooligosaccharides and conjugates: access to lipochitooligosaccharides and the TMG-chitotriomycin. Angew Chem Int Ed Engl. 2014, 53, 11912-11916.
19. Baumann, K.; Kowalczyk, D.; Kunz, H., Total synthesis of the glycopeptide recognition domain of the P-selectin glycoprotein ligand 1. Angew Chem Int Ed Engl. 2008, 47 (18), 3445-3449.
20. Chen, Q.; Cheng, Q. Y.; Zhao, Y. C.; Han, B. H., Glucosamine hydrochloride functionalized water-soluble conjugated polyfluorene: synthesis, characterization, and interactions with DNA. Macromol Rapid Commun 2009, 30, 1651-1655.
21. Bavetsias, V.; Bisset, G. M. F.; Jarman, M., Convenient Preparation of α-Tert-Butyl N-Blocked Glutamates Through γ-Allyl Ester Protection. Synthetic Communications 1995, 25, 947-958.
22. Chen, L.; Zheng, M.; Zhou, Y.; Liu, H.; Jiang, H., Ionic‐Liquid‐Supported Total Synthesis of Sansalvamide A Peptide. Synthetic Communications 2008, 38, 239-248.
23. Mariella Fiorenza, A. M., Sandro Papaleo, Stefania Pastorelli, Alfredo Ricci, Fluoride ion induced reactions of organosilanes: the preparation of mono and dicarbonyl compounds from β-ketosilanes. Tetrahedron Letters 1985, 26, 787-788.
24. Vishwakarma*, D. R. a. R. A., Iterative Synthesis of Leishmania Phosphoglycans by Solution, Solid-Phase, and Polycondensation Approaches without Involving Any Glycosylation. J. Org. Chem. 2003, 68, 4446-4456.
25. Yashunsky, D. V.; Nikolaev, A. V., Hydrogenphosphonate synthesis of sugar phosphomonoesters. Journal of the Chemical Society, Perkin Transactions 2000, 8, 1195-1198.
26. P. Westerduin, G. H. V., G.A. van der Mare1 and J.H. van Boom*, Synthesis Of The Fragement GlcNAc-u(l+P+6)-GlcNAc of The Cell Wall Polymer of Staphylococcuslactis Having Repeating N-Acetyl-D-glucosamine Phosphate units. Tetrahedron Letters 1986, 27, 6271-6274.
27. Sun, Q.; Yang, Q.; Gong, S.; Sun, J.; Li, X.; Liu, G., An ImprovedH-Phosphonate Approach for Practical Synthesis of Phosphoramidon. Phosphorus, Sulfur, and Silicon and the Related Elements 2014, 189, 1887-1894.
28. Kruger, R. G.; Lu, W.; Oberthur, M.; Tao, J.; Kahne, D.; Walsh, C. T., Tailoring of glycopeptide scaffolds by the acyltransferases from the teicoplanin and A-40,926 biosynthetic operons. Chem Biol 2005, 12, 131-140.
29. Hagan, W. J., Jr., Uracil-catalyzed synthesis of acetyl phosphate: a photochemical driver for protometabolism. Chembiochem 2010, 11, 383-387.
30. Borch*, C. L. F. M. a. R. F., Activation Mechanisms of Nucleoside Phosphoramidate Prodrugs. J. Med. Chem. 2000, 43, 4319-4327.
31. Michael Schultz, H. K., Synthetic O-glycopeptides as model substrates for glycosyltransferases. Tetrahedron: Asymmetry 1993, 4, 1205-1220.
32. Laura Gillard, A.-T. T., François-Didier Boyer* and Jean-Marie Beau*, Chitooligosaccharide Synthesis Using an Ionic Tag. Eur. J. Org. Chem. 2016, 2016, 1103-1109.
33. Shih, H. W.; Chang, Y. F.; Li, W. J.; Meng, F. C.; Huang, C. Y.; Ma, C.; Cheng, T. J.; Wong, C. H.; Cheng, W. C., Effect of the peptide moiety of Lipid II on bacterial transglycosylase. Angew Chem Int Ed Engl. 2012, 51, 10123-10126.
34. Seiichi Inamura, K. F. a. S. K., Synthetic study of peptidoglycan partial structures. Synthesis of tetrasaccharide and octasaccharide fragments. Tetrahedron Letters 2001, 42, 7613–7616.
35. Edgar, L. J. G.; Dasgupta, S.; Nitz, M., Protecting-Group-Free Synthesis of Glycosyl 1–Phosphates. Organic Letters 2012, 14, 4226-4229.
36. Seo, J.; Suh, M.-S.; Thangadurai, T. D.; Kim, J.; Rhee, Y. H.; Yoon, H.-J.; Shin, S. K., Mass-Balanced 1H/2H Isotope Dipeptide Tag for Simultaneous Protein Quantitation and Identification. Analytical Chemistry 2008, 80, 6145-6153.

  • 同意授權校內瀏覽/列印電子全文服務,於2022-01-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-01-12起公開。

  • 如您有疑問,請聯絡圖書館