進階搜尋


下載電子全文  
系統識別號 U0026-1112201714414400
論文名稱(中文) 應用有限元素分析法於具有深度邊緣提升層之第二類窩洞嵌體設計參數研究
論文名稱(英文) A Parametric Study for Inlay Design of Class II Cavity with Deep Margin Elevation using Finite Element Method
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 106
學期 1
出版年 106
研究生(中文) 侯均憲
研究生(英文) Chun-Hsien Hou
學號 N16041749
學位類別 碩士
語文別 中文
論文頁數 99頁
口試委員 指導教授-林啟倫
口試委員-陳永崇
口試委員-方晶晶
口試委員-劉至行
中文關鍵字 窩洞設計  嵌體  深度邊緣提升術  有限元素分析  響應曲面 
英文關鍵字 Cavity Design  Inlay  Deep Margin Elevation  Finite Element Analysis  Response Surface 
學科別分類
中文摘要 複合樹脂材料經長時間的開發至今,在材料本身的物理化學性質、力學強度、可塑性、操作性以及長期耐用度上,已有相當程度的提升。除此之外,透過調整黏著劑成分和改善黏著機制,複合樹脂在與牙釉質及牙本質接著時,都可提供不錯的黏著強度。因此,有學者提出應用牙科用複合樹脂配合深度邊緣提升術(Deep Margin Elevation),來解決齒齦下深度邊緣的問題,以取代傳統的牙冠增長術。
由過去文獻中可發現,對於嵌體和蓋體等非直接式牙科補綴物的設計都僅就少數幾個設計參數或設計點個別討論,而沒有大規模系統性的研究。而關於深度邊緣提高術的研究亦多侷限在填補後邊緣完整性的探討,並無深入探討其使用之補綴物設計及材料選擇,復形後之力學行為及長期耐用性也未有完整的討論。
本研究首先將建立一三維人類小臼齒有限元素模型,進行第二類窩洞嵌體幾何設計之參數化研究,探討各項設計參數對牙齒及補綴物之力學行為的影響力;再以反應曲面模型來預測不同設計下,牙齒與補綴物之力學行為與交互關係。並使用此模型來建立一個具有力學基礎之設計建議,提供臨床醫師進行此類補綴物設計時,在調整嵌體設計參數上作為參考來降低牙齒或補綴物發生脫離或斷裂的情況。
本研究結果顯示,透過調整設計參數,可在一定程度上改善牙齒結構內以及材料結合面上的拉伸應力分布情形,且不同的嵌體材料對於設計參數的需求不盡相同。而使用DME於具有深度邊緣的第二類窩洞嵌體補綴中,對於牙齒的力學行為並無明顯的影響。
英文摘要 The proposed study is aimed to evaluate the mechanical performance of various design parameters of inlay for cavities with deep margin elevation and the inter-relationship among these parameters. Finite element analysis was introduced to simulate the mechanical behaviour of the tooth and restoration. Response surface method was used to analysis the relationship between the mechanical performance of restored tooth and different prosthetic designs. Three materials of inlay: composite resin, ceramics, and glass-ceramic were examined in the present study. The result shows for all three materials, a wide isthmus will benefit the mechanical strength of the restored tooth. The effects of other parameters on the tooth’s mechanical behaviour varied when different material of inlay was used, but the thickness of the elevation didn’t show a strong influence. For conclusion, inlays with different material required distinct designs. It is important to choose the appropriate material and design of inlay to feat the tooth’s geometry and mechanical conditions of the patient.
論文目次 摘要 I
Extended Abstract II
誌謝 XI
目錄 XII
表目錄 XV
圖目錄 XVI
符號 XIX
第一章 緒論 1
1.1 研究背景 1
1.1.1 嵌體與非直接式補綴物 1
1.1.2 深度邊緣與及其在臨床上造成的挑戰 2
1.1.3 深度邊緣之解決方法 2
1.1.4 齲齒窩洞之分類 4
1.2 文獻回顧 4
1.2.1 補綴物之幾何設計 4
1.2.2 深度邊緣提升術 6
1.2.2.1 深度邊緣提升術之沿革 6
1.2.2.2 與深度邊緣提升術相關之術式 7
1.2.2.3 深度邊緣提升術之現況與相關研究 8
1.3 研究動機 10
1.4 研究目的 10
第二章 以有限元素法分析牙齒力學行為 11
2.1 建立3D牙齒幾何模型 11
2.2 CLASS II窩洞及DME提升層之設計參數及材料 11
2.3 有限元素分析 14
2.3.1 邊界條件及負載 14
2.3.2 網格 14
2.4 有限元素模型之實驗驗證 15
2.4.1 實驗計劃概述 15
2.4.2 實驗樣本 16
2.4.3 實驗之各項外部條件設定 17
2.4.4 應變規與量測模組 17
2.4.5 訊號紀錄及處裡 17
2.4.6 配合實驗條件的有限元素模型 18
2.4.7 有限元素模型驗證實驗結果 19
第三章 參數研究及建立設計參考 22
3.1 受檢視之應力項目 22
3.2 變異性分析 (ANALYSIS OF VARIANCE, ANOVA) 22
3.3 反應曲面法 (RESPONSE SURFACE METHOD, RSM) 23
3.4 建立設計參考 23
第四章 參數研究結果 24
4.1 ANOVA結果 24
4.1.1 複合樹脂嵌體之案例 24
4.1.2 陶瓷嵌體之案例 29
4.1.3 二矽酸鋰嵌體之案例 34
4.2 DME提升層中的MPS峰值 39
4.3 DME提升層與其他材料之交界面中的ITS峰值 39
4.4 RSM結果 40
4.4.1 複合樹脂嵌體之案例 40
4.4.2 陶瓷嵌體之案例 44
4.4.3 二矽酸鋰嵌體之案例 48
第五章 設計建議與嵌體材料選擇 53
5.1 各材料嵌體案例之力學行為與設計建議 53
5.1.1 複合樹脂嵌體之案例 53
5.1.2 陶瓷嵌體之案例 58
5.1.3 二矽酸鋰嵌體之案例 61
5.2 嵌體材料對牙齒力學行為的影響 64
5.3 DME對補綴表現的影響 65
第六章 結論 66
第七章 未來研究方向 67
7.1 實驗驗證 67
7.2 增加有限元素模型擬真度 67
7.3 系統化及客製化 67
7.4 最佳化研究 67
第八章 參考文獻 68
第九章 附錄 72

參考文獻 [1] P. Magne and R. C. Spreafico, "Deep margin elevation: a paradigm shift.," Am J Esthet Dent, vol. 2, pp. 86-96, 2012.
[2] M. L. Mei, Y. M. Chen, H. Li, and C. H. Chu, "Influence of the indirect restoration design on the fracture resistance: a finite element study," Biomed Eng Online, vol. 15, p. 3, Jan 08 2016.
[3] K. Yamanel, A. Çaglar, K. GÜLSAHI, and U. A. Özden, "Effects of different ceramic and composite materials on stress distribution in inlay and onlay cavities: 3-D finite element analysis," Dental materials journal, vol. 28, no. 6, pp. 661-670, 2009.
[4] R. B. Fonseca, A. J. Fernandes-Neto, L. Correr-Sobrinho, and C. J. Soares, "The influence of cavity preparation design on fracture strength and mode of fracture of laboratory-processed composite resin restorations," The Journal of Prosthetic Dentistry, vol. 98, no. 4, pp. 277-284, 2007.
[5] C. Frese, D. Wolff, and H. J. Staehle, "Proximal box elevation with resin composite and the dogma of biological width: clinical R2-technique and critical review," Oper Dent, vol. 39, no. 1, pp. 22-31, Jan-Feb 2014.
[6] I. Ilgenstein et al., "Influence of proximal box elevation on the marginal quality and fracture behavior of root-filled molars restored with CAD/CAM ceramic or composite onlays," Clin Oral Investig, vol. 19, no. 5, pp. 1021-8, Jun 2015.
[7] V. Muller, K. H. Friedl, K. Friedl, S. Hahnel, G. Handel, and R. Lang, "Influence of proximal box elevation technique on marginal integrity of adhesively luted Cerec inlays," Clin Oral Investig, Aug 09 2016.
[8] V. S. Dawson, P.-E. Isberg, T. Kvist, and H. Fransson, "Further Treatments of Root-filled Teeth in the Swedish Adult Population: A Comparison of Teeth Restored with Direct and Indirect Coronal Restorations," Journal of Endodontics, vol. 43, no. 9, pp. 1428-1432, 2017/09/01/ 2017.
[9] P. Ausiello et al., "Mechanical behavior of bulk direct composite versus block composite and lithium disilicate indirect Class II restorations by CAD-FEM modeling," Dental Materials, vol. 33, no. 6, pp. 690-701, 2017/06/01/ 2017.
[10] R. Ireland, A dictionary of dentistry. Oxford University Press, 2010.
[11] G. Couegnat, S. L. Fok, J. E. Cooper, and A. J. Qualtrough, "Structural optimization of dental restorations using the principle of adaptive growth," Dent Mater, vol. 22, no. 1, pp. 3-12, Jan 2006.
[12] L. C. Anami, J. M. Lima, P. H. Corazza, E. T. Yamamoto, M. A. Bottino, and A. L. Borges, "Finite element analysis of the influence of geometry and design of zirconia crowns on stress distribution," J Prosthodont, vol. 24, no. 2, pp. 146-51, Feb 2015.
[13] C. L. Lin, Y. H. Chang, S. K. Hsieh, and W. J. Chang, "Estimation of the failure risk of a maxillary premolar with different crack depths with endodontic treatment by computer-aided design/computer-aided manufacturing ceramic restorations," J Endod, vol. 39, no. 3, pp. 375-9, Mar 2013.
[14] C. J. Soares, L. R. Martins, R. B. Fonseca, L. Correr-Sobrinho, and A. J. Fernandes Neto, "Influence of cavity preparation design on fracture resistance of posterior Leucite-reinforced ceramic restorations," J Prosthet Dent, vol. 95, no. 6, pp. 421-9, Jun 2006.
[15] P. Ausiello, P. Franciosa, M. Martorelli, and D. C. Watts, "Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth," Dent Mater, vol. 27, no. 5, pp. 423-30, May 2011.
[16] D. Dietschi and R. Spreafico, "Current clinical concepts for adhesive cementation of tooth-colored posterior restorations," Practical periodontics and aesthetic dentistry: PPAD, vol. 10, no. 1, pp. 47-54; quiz 56, 1998.
[17] J. L. Schwartz, M. H. Anderson, and G. B. Pelleu, "Reducing Microleakage With The Glass-Ionomer Resin Sandwich Technique," (in English), Operative Dentistry, Article vol. 15, no. 5, pp. 186-192, Sep-Oct 1990.
[18] S. K. Sidhu and L. J. Henderson, "INVITRO MARGINAL LEAKAGE OF CERVICAL COMPOSITE RESTORATIONS LINED WITH A LIGHT-CURED GLASS IONOMER," (in English), Operative Dentistry, Article vol. 17, no. 1, pp. 7-12, Jan-Feb 1992.
[19] M. Tyas and M. Burrow, "Adhesive restorative materials: a review," Australian Dental Journal, vol. 49, no. 3, pp. 112-121, 2004.
[20] A. O. Carvalho, G. Bruzi, M. Giannini, and P. Magne, "Fatigue resistance of CAD/CAM complete crowns with a simplified cementation process," J Prosthet Dent, vol. 111, no. 4, pp. 310-7, Apr 2014.
[21] R. Frankenberger et al., "Effect of proximal box elevation with resin composite on marginal quality of ceramic inlays in vitro," Clin Oral Investig, vol. 17, no. 1, pp. 177-83, Jan 2013.
[22] V. Müller, K.-H. Friedl, K. Friedl, S. Hahnel, G. Handel, and R. Lang, "Influence of proximal box elevation technique on marginal integrity of adhesively luted Cerec inlays," Clinical oral investigations, vol. 21, no. 2, pp. 607-612, 2017.
[23] M. Zaruba, T. Göhring, F. Wegehaupt, and T. Attin, "Influence of a proximal margin elevation technique on marginal adaptation of ceramic inlays," Acta Odontologica Scandinavica, vol. 71, no. 2, pp. 317-324, 2013.
[24] P. Magne, W. S. So, and D. Cascione, "Immediate dentin sealing supports delayed restoration placement," The Journal of prosthetic dentistry, vol. 98, no. 3, pp. 166-174, 2007.
[25] S. J. Paul and P. Scharer, "The dual bonding technique: a modified method to improve adhesive luting procedures," Int J Periodontics Restorative Dent, vol. 17, no. 6, pp. 536-45, Dec 1997.
[26] E. Pashley, R. Comer, M. Simpson, J. Horner, D. Pashley, and W. Caughman, "Dentin permeability: Sealing the dentin in crown preparations," Operative dentistry, vol. 17, no. 1, pp. 13-20, 1992.
[27] Nikaido T, Takada T, Burrow MF, Satoh M, and H. H, "Early bond strengths of dual cured resin cements to enamel and dentin," J Jpn Soc Dent Mater Dev, vol. 11, pp. 910-915, 1992.
[28] K. Zelic, A. Vukicevic, G. Jovicic, S. Aleksandrovic, N. Filipovic, and M. Djuric, "Mechanical weakening of devitalized teeth: three-dimensional Finite Element Analysis and prediction of tooth fracture," Int Endod J, vol. 48, no. 9, pp. 850-63, Sep 2015.
[29] A. U. Yap, C. H. Tan, and S. M. Chung, "Wear behavior of new composite restoratives," Oper Dent, vol. 29, no. 3, pp. 269-74, May-Jun 2004.
[30] A. Florescu, A. M. Pangica, V. Hancu, R. Manu, and C. F. Biclesanu, "FEM Study Regarding Materials Retention Used for Abfraction Adhesive Restoration," (in English), Materiale Plastice, Article vol. 53, no. 4, pp. 689-692, Dec 2016.
[31] B. C. Koycu, P. Imirzalioglu, and U. A. Ozden, "Three-dimensional finite element analysis of stress distribution in inlay-restored mandibular first molar under simultaneous thermomechanical loads," (in English), Dental Materials Journal, Article vol. 35, no. 2, pp. 180-186, Apr 2016.
[32] J. X. Zhu, Q. G. Rong, X. Y. Wang, and X. J. Gao, "Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxillary premolars: A finite element analysis," (in English), Journal of Prosthetic Dentistry, Article vol. 117, no. 5, pp. 646-655, May 2017.
[33] S. Anatavara, K. Sitthiseripratip, and P. Senawongse, "Stress relieving behaviour of flowable composite liners: A finite element analysis," (in English), Dental Materials Journal, Article vol. 35, no. 3, pp. 369-378, Jun 2016.
[34] C. M. P. Rosatto et al., "Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of molars restored with bulk-fill composites and incremental filling technique," (in English), Journal of Dentistry, Article vol. 43, no. 12, pp. 1519-1528, Dec 2015.
[35] M. Giannini, C. J. Soares, and R. M. de Carvalho, "Ultimate tensile strength of tooth structures," Dental Materials, vol. 20, no. 4, pp. 322-329, 2004/05/01/ 2004.
[36] J. Bijelic-Donova, S. Garoushi, P. K. Vallittu, and L. V. Lassila, "Mechanical properties, fracture resistance, and fatigue limits of short fiber reinforced dental composite resin," J Prosthet Dent, vol. 115, no. 1, pp. 95-102, Jan 2016.
[37] J. Xu et al., "Do phosphoric acid esters affect the immediate enamel bond strengths?," Journal of Adhesion Science and Technology, vol. 30, no. 22, pp. 2498-2510, 2016/11/16 2016.
[38] A. Alghanem, G. Fernandes, M. Visser, R. Dziak, W. G. Renné, and C. Sabatini, "Biocompatibility and bond degradation of poly-acrylic acid coated copper iodide-adhesives," Dental Materials, vol. 33, no. 9, pp. e336-e347, 2017/09/01/ 2017.
[39] W. S. Vieira, R. C. B. Alonso, A. H. M. Gonzalez, P. H. P. D'Alpino, and V. Di Hipolito, "Bond strength and chemical interaction of self-adhesive resin cements according to the dentin region," (in English), International Journal of Adhesion and Adhesives, Article vol. 73, pp. 22-27, Mar 2017.
[40] H. Wang, Y. Zhao, Y. Fan, and Y. Chen, "The compressive strength, tensile strength, flexural strength and micro-hardness of Plat-II Castable Ceramics," Hua xi yi ke da xue xue bao= Journal of West China University of Medical Sciences= Huaxi yike daxue xuebao, vol. 28, no. 4, pp. 349-352, 1997.
[41] C. Anunmana, T. Champirat, and B. Jirajariyavej, "Tensile strength of bilayered ceramics and corresponding glass veneers," The Journal of Advanced Prosthodontics, vol. 6, no. 3, pp. 151-156, 2014

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-12-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-12-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw