進階搜尋


下載電子全文  
系統識別號 U0026-1112201414411700
論文名稱(中文) 智慧車整合定位與主動式安全之研究
論文名稱(英文) Research on Integrated Positioning and Active Safety of Intelligent Vehicles
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 103
學期 1
出版年 103
研究生(中文) 林景富
研究生(英文) Ching-Fu Lin
學號 N28971146
學位類別 博士
語文別 英文
論文頁數 91頁
口試委員 指導教授-莊智清
口試委員-卓大靖
口試委員-張帆人
口試委員-蔡清池
口試委員-孔蕃鉅
口試委員-王振興
口試委員-李祖聖
口試委員-蔡聖鴻
口試委員-鄭銘揚
中文關鍵字 整合定位  主動式安全  先進駕駛輔助系統  安全駕駛系統 
英文關鍵字 Integrated positioning  Active CAS  ADAS  Safety driving system 
學科別分類
中文摘要 對於智慧車安全駕駛系統之研究,目前數種先進駕駛輔助系統已發展用於更好的便利性與安全性。車輛安全駕駛系統一般可分為主動式與被動式安全系統,前者如盲點偵測、車道偏移警示、前方防撞警示、自動跟車、適應性頭燈等,而後者如安全帶、氣囊、安全車體結構等。其中輔助駕駛之載具要求有相當高且可靠之定位精度與穩定且即時之車輛通訊系統,以控制載具行駛並可於特定行車情境提供安全之輔助。由於定位系統的持續需求下,GPS已經成為一重要且不可或缺的導航系統。然而當自動載具行駛於市區中會受到高樓、隧道等之遮蔽與多路徑效應的影響,導致訊號中斷。為了解決這個問題,以慣性導航系統與GPS的整合式導航技術已成為導航系統的主要方向。再者,對於智慧車安全駕駛系統而言,穩定與即時的車輛專用短距離通訊系統已是必要的配備之一。藉由車對車或車對設施的即時訊息交換可使主動式避撞系統的穩定性與可靠度改善並促使智慧車進一步發展。
本論文之貢獻為針對車輛專用短距離通訊系統應用及衛星導航與慣性感測等感測器結合發展下,以探討整合定位與主動式安全系統之研究。首先,對專用短距離通訊系統進行現有規格分析與研究,並藉由使用於一車載控制系統以進行討論,作為規劃專用短距離通訊應用於主動式安全系統之基礎。其次,由於安全駕駛系統需要正確且可靠的速度與朝向角,以作為各項車輛控制之必備條件。然而,基於GPS系統位置資訊而得到的朝向角有時會有誤導,尤其在車速低的狀況下。本論文基於整合式導航系統架構下發展一感測器融合方法改善此項問題,並且此適應性兩級濾波器提供了簡單實現、經濟有效、調整容易與性能保證等優點。本論文基於整合定位系統與專用短距離通訊系統為基礎,進行主動式避撞系統之研究。對於有主動式安全需求之自動駕駛,本論文發展一階層式架構以利融合不同類型、特性、精度之感測資料並結合車輛動態與環境模式。此一研究以自動駕駛之避障控制與超車控制為範例進行細部設計、模擬分析與性能評比。
英文摘要 Addressed on the studies of intelligent vehicle safety driving system (IVSDS), several advanced driver assistance systems (ADAS) have been recently developed for better convenience and safety. These ADASs can be normally separated into active and passive safety systems. The former includes blind spot detection, lane departure warning, forward collision warning, adaptive cruise control, and adaptive headlights, and the latter contains seat belts, car airbags, and vehicle body structures. Advanced driver assisted vehicles employ highly accurate/reliable positioning and stable/real-time vehicle communication system to assist the drivers to control the vehicle traveling at specific driving situations to guarantee safety. GPS has become one of the most crucial navigation systems. However, GPS cannot provide an uninterrupted positioning solution when the vehicle drives in areas such as urban canyons or tunnels, because the system suffers from signal blockage and multipath efforts. In order to deal with these problems, GPS/Inertial Navigation System (INS) integrated navigation technique has become the main direction to facilitate a continuous positioning solution. Moreover, stable and real-time vehicular dedicated short-range communication (DSRC) is an important index for IVSDS. The improvement of the stability and reliability will prompt the development of intelligent vehicles further based on the real-time information exchanged by vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I).
The contributions of this dissertation address on vehicular DSRC, satellite navigation, and inertial sensing to explore the research of integrated positioning and active collision avoidance system (CAS). Firstly, this dissertation performs the analysis and study of the current specifications for the DSRC system. According to the discussion on a vehicular control system, the results are planned for the basis of the DSRC applications. Furthermore, the safety driving system needs accurate and reliable speed and heading angle data for vehicle controls. However, the heading angles derived based on GPS position information are sometimes misleading, especially when the vehicle speed is low. This dissertation proposes the use of the sensor fusion approach to address the issue. An adaptive two-stage filter is proposed to provide the benefits of simple implementation, cost-effectiveness, ease-of-tuning, and performance assurance. Based on the integrated positioning system and the DSRC system, the study further investigates active CAS. For active safety requirements of the automatic driving, this dissertation develops a hierarchical structure to facilitate the integration of different types, characteristics, accuracy of sensing data in combination with the vehicle dynamics and environment model. This research uses collision avoidance control and overtaking control of automatic driving as examples for detailed design, simulation and performance assessment.
論文目次 摘要 i
Abstract iii
Acknowledgement v
Contents vi
List of Figures viii
List of Tables x
List of Abbreviation xi
Chapter 1 Introduction 1
1.1 Background 2
1.2 Motivation 4
1.3 Contributions 9
1.4 Organization 10
Chapter 2 DSRC-Based Vehicular Control System 11
2.1 DSRC 12
2.1.1 System Implementation 14
2.1.2 Operating Principle 16
2.2 High Dynamic GPS Receiver 19
2.2.1 Hardware Implementation 19
2.2.2 Software Design 21
2.2.3 Performance Analysis for High Dynamic GPS Receiver 22
2.3 Summary 26
Chapter 3 Sensor-Fusion for High Accuracy in Vehicular Speed and Heading Angle Estimation 27
3.1 Determination of Speed and Heading Angle 29
3.1.1 Difference-Based Approach 29
3.1.2 Filter-Based Approach 35
3.1.3 Sensor-Fusion Approach 39
3.2 Simulation Results 45
3.2.1 Constant Speed and Heading Angle Case 45
3.2.2 Changing Speed/Heading Angle Case 49
3.3 Experimental Results 53
3.4 Summary 57
Chapter 4 Active Collision Avoidance System of Intelligent Vehicles 58
4.1 Control System 60
4.2 Safety System 67
4.3 Simulation Results 70
4.3.1 Active CAS 71
4.3.2 Effect of 74
4.3.3 Effect of 75
4.4 Experimental Results 76
4.5 Summary 78
Chapter 5 Conclusions 79
5.1 Conclusions 79
5.2 Future Research 81
References 82
Appendix A Determination of the Error Covariance of the Riccati Equation and Covariance of the Lyapunov Equation 87
Publication List 91
參考文獻 [1] 2cm, from http://www.2cm.com.tw/.
[2] N. Alam, A. T. Balaei, and A. G. Dempster, “Relative Positioning Enhancement in VANETs: A Tight Integration Approach,” IEEE Transactions on Intelligent Transportation Systems, Vol. 14, No. 1, pp. 47–55, 2013.
[3] N. Alam, A Kealy, and A. G. Dempster, “Cooperative Inertial Navigation for GNSS-Challenged Vehicular Environments,” IEEE Transactions on Intelligent Transportation Systems, Vol. 14, No. 3, pp. 1370–1379, 2013.
[4] A. Amditis, N. Floudas, U. Kaiser-Dieckhoff, T. Hackbarth, B. Van Den Broek, M. Miglietta, L. Danielson, M. Gemou, and E. Bekiaris, “Integrated Vehicle’s Lateral Safety: the LATERAL SAFE Experience,” IET Intelligent Transport Systems, Vol. 2, No. 1, pp. 15–26, 2008.
[5] L. Armstrong, “Dedicated Short Range Communications (DSRC),” Available at: http://leearmstrong.com/Dsrc/DSRCCHomeset.htm.
[6] S. V. Bana, Coordinating Automated Vehicles via Communication, Ph.D. dissertation, Univ. California Berkeley, 2000.
[7] H. Bar-Gera and D. Shinar, “The Tendency of Drivers to Pass Other Vehicles,” Transportation Research Part F, 8, pp. 429–439, 2005.
[8] N. Berend, “Estimation of the Probability of Collision Between Two Catalogued Orbiting Objects,” Advances in Space Research, Vol. 23, No. 1, pp. 243–247, 1999.
[9] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, Wiley, 1997.
[10] J. B. Bullock, M. Foss, G. J. Geier, and M. King, “Integration of GPS with Other Sensors and Network Assistance,” In E. D. Kaplan and C. J. Hegarty, editors, Understand GPS Principles and Applications, Artech House, 2006.
[11] E. F. Camacho and C. Bordons, Model Predictive Control, New York: (Springer), 2000.
[12] D. O. Cualain, C. Hughes, M. Glavin, and E. Jones, “Automotive Standards-Grade Lane Departure Warning System,” IET Intelligent Transport Systems, Vol. 6, No. 1, pp. 44–57, 2012.
[13] DB Engineering Pvt. Ltd., GPS1000 Reference Manual.
[14] S. Edwards, G. Evans, P. Blythe, D. Brennan, and K. Selvarajah, “Wireless Technology Applications to Enhance Traveler Safety,” IET Intelligent Transport Systems, Vol. 6, No. 3, pp. 328–335, 2012.
[15] J. A. Farrell, The Global Positioning System and Inertial Navigation, McGraw-Hill, 1998.
[16] J. Georgy, A. Noureldin, M. J. Korenberg, and M. M. Bayoumi, “Lowcost Three-Dimensional Navigation Solution for RISS/GPS Integration Using Mixture Particle Filter,” IEEE Transactions on Vehicular Technology, Vol. 59, No. 2, pp. 599–615, 2008.
[17] J. L. Gerner, J. L. Issler, D. Laurichesse, C. Mehlen, and N. Wilhelm, “TOPSTAR 3000 – An Enhanced GPS. Receiver for Space Applications,” Final Presentation of Topstar 3000 and the experimental GPS attitude receiver, ESTEC, October, 2000.
[18] D. A. Gordon and T. M. Mart, “Drivers’ Decision in Overtaking and Passing,” Highway Resources Record, Vol. 247, pp. 4–50, 1968.
[19] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration, Wiley-Interscience, 2007.
[20] H. Gudbjartsson and S. Patz, “The Rician Distribution of Noisy MRI Data,” Magnetic Resonance in Medicine, Vol. 34, No. 6, pp. 910–914, 1995.
[21] C. Hatipoglu, U. Ozguner, and K. A. Redmill, “Automated Lane Change Controller Design,” IEEE Transactions on Intelligent Transportation Systems, Vol. 4, No. 1, pp. 13–22, 2003.
[22] G. Hegeman, K. Brookhuis, and S. Hoogendoorn, “Opportunities of Advanced Driver Assistance Systems Towards Overtaking,” European Journal of Transport and Infrastructure Research, Vol. 5, No. 4, pp. 281–296, 2005.
[23] S. Hong, M. H. Lee, H. H. Chun, S. H. Kwon, and J. L. Speyer, “Observability of Error States in GPS/INS Integration,” IEEE Transactions on Vehicular Technology, Vol. 54, No. 2, pp. 731–743, 2005.
[24] Hope, from http://www.hope.com.tw/.
[25] S. Hu, L. Su, S. Li, S. Wang, C. Pan, S. Gu, M. T. Al Amin, H. Liu, S. Nath, R. R. Choudhury, and T. F. Abdelzaher, “Poster Abstract: eNav a Smartphone-Based Energy Efficient Vehicular Navigation System,” In Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, 2014.
[26] IEEE P1609.4 SWG, et al., “IEEE P1609.4 Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)--Multi-Channel Operation,” IEEE P1609.4 D9, June, 2009.
[27] IEEE P1609.3 SWG, et al., “Wireless Access in Vehicular Environments (WAVE) Networking Services,” IEEE P1609.3 D9, June, 2009.
[28] IEEE P1609.2 SWG, et al., “IEEE P1609.2 Trial-Use Standard for Wireless Access in Vehicular Environments—Security Services for Applications and Management Messages,” IEEE P1609.2 D07, June, 2009.
[29] IEEE P1609.1 SWG, et al., “IEEE P1609.1 Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) Resource Manager,” IEEE P1609.1 D0.6, June, 2009.
[30] J. C. Juang and C. F. Lin, “A Sensor-Fusion Scheme for the Estimation of Vehicular Speed and Heading Angle,” IEEE Transactions on Vehicular Technology, 2014.
[31] J. C. Juang, C. F. Lin, C. M. Hu, C. C. Chang, Y. F. Tsai, and C. T. Lin, “Implementation and Test of a Space-Borne GPS Receiver Payload of University Microsatellite,” Journal of Aeronautics, Astronautics and Aviation, Series A, Vol. 44, No. 3, pp. 141-148, 2012.
[32] H. Jula, E. B. Kosmatopoulos, and P. A. Ioannou, “Collision Avoidance Analysis for Lane Changing and Merging,” IEEE Transactions on Vehicular Technology, Vol. 49, No. 6, pp. 2295–2308, November, 2000.
[33] J. B. Kenny, “Dedicated Short-Range Communication (DSRC) Standards in the United States,” Proceedings of the IEEE, Vol. 99, No. 7, pp. 1162–1182, 2011.
[34] A. Laureshyn, A. Svensson, and C. Hyden, “Evaluation of Traffic Safety, Based on Micro-Level Behavioural Data: Theoretical Framework and First Implementation,” Accident Analysis & Prevention, Vol. 42, pp. 1637–1646, 2010.
[35] C. F. Lin, J. C. Juang, and K. R. Li, “Active Collision Avoidance System for Steering Control of Autonomous Vehicles,” IET Intelligent Transport Systems, Vol. 8, Iss. 6, pp. 550-557, 2014.
[36] C. F. Lin, J. C. Juang, E. Liang, and L. Y. Ke, “Application of DSRC/WAVE for More Efficient Streetlamp Control,” SICE Annual Conference 2011, Waseda University, Tokyo, Japan, 2011.
[37] H. Liu, S. Nassar, and N. El-Sheimy, “Two-Filter Smoothing for Accurate INS/GPS Land-Vehicle Navigation in Urban Centers,” IEEE Transactions on Vehicular Technology, Vol. 59, No. 9, pp.4256-4267, 2010.
[38] G. R. Lovegrove and T. Sayed, “Macrolevel Collision Prediction Models to Enhance Traditional Reactive Road Safety Improvement Programs,” Transportation Research Record, pp. 65–73, 2007.
[39] P. Lytrivis, G. Thomaidis, M. Tsogas, and A. Amditis, “An Advanced Cooperative Path Prediction Algorithm for Safety Applications in Vehicular Networks,” IEEE Transactions on Intelligent Transportation Systems, Vol. 12, No. 3, pp. 669–679, 2011.
[40] T. W. Matson and T. W. Forbes, “Overtaking and Passing Requirements as Determined from a Moving Vehicle,” Proceedings of Highway Research Board, Vol. 18, pp. 100-112, 1938.
[41] J. I. Meguro, Y. Kojima, N. Suzuki, and E. Teramoto, “Positioning Techniques Based on Vehicle Trajectory Using GPS Raw Data and Lowcost IMU,” International Journal of Automotive Engineering, Vol. 3, pp. 75–80, 2012.
[42] G. Minkler and J. Minkler, Theory and Application of Kalman Filtering, Magellan, 1993.
[43] J. Navarro, F. Mars, and M. S. Young, “Lateral Control Assistance in Car Driving: Classification, Review and Future Prospects,” IET Intelligent Transport Systems, Vol. 5, No. 3, pp. 207–220, 2011.
[44] A. Noureldin, T. B. Karamat, M. D. Eberts, and A. El-Shafie, Performance Enhancement of MEMS-Based INS/GPS Integration for Low-Cost Navigation Applications, 2009.
[45] C. O. Nwagboso, Automotive Sensory Systems, Chapman & Hall, 1993.
[46] D. Obradovic, H. Lenz, and M. Schupfner, “Fusion of Sensor Data in Siemens Car Navigation System,” IEEE Transactions on Vehicular Technology, Vol. 56, No. 1, pp. 4350, 2007.
[47] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, McGraw-Hill, 2001.
[48] R. Parker and S. Valaee, “Vehicular Node Localization Using Received-Signal-Strength Indicator,” IEEE Transactions on Vehicular Technology, Vol. 56, No.6, pp. 3371–3380, 2007.
[49] R. F. Pawula, S. O. Rice, and J. H. Roberts, “Distribution of the Phase Angle Between Two Vectors Perturbed by Gaussian Noise,” IEEE Transactions on Communications, Vol. 30, No. 8, pp. 1828–1841, 1982.
[50] R. Pepy, A. Lambert, and H. Mounier, “Path Planning Using a Dynamic Vehicle Model,” In Proceeding of the Second ICTTA, pp. 781-786, 2006.
[51] A. Polychronopoulos, M. Tsogas, A. J. Amditis, and L. Andreone, “Sensor Fusion for Predicting Vehicles’ Path for Collision Avoidance Systems,” IEEE Transactions on Intelligent Transportation Systems, Vol. 8, No. 3, pp. 549–562, 2007.
[52] J. G. Proakis, Digital Communications, McGraw-Hill, 1995.
[53] R. Rajamani, Vehicle Dynamic and Control, New York: (Springer), 2006.
[54] A. Roozenburg and A. Nicholson, Required Passing Sight Distance for Rural Roads: a Risk Analysis, Canterbury Univ., 2000.
[55] T. Shamir, “How Should an Autonomous Vehicle Overtake a Slower Moving Vehicle: Design and Analysis of an Optimal Trajectory,” IEEE Transactions on Automatic Control, Vol. 49, No. 4, pp. 607–610, 2004.
[56] R. Soeterboek, Predictive Control: a Unified Approach, New York: (Prentice Hall), 1992.
[57] Z. F. Syed, P. Aggarwal, X. Niu, and N. El-Sheimy, “Civilian Vehicle Navigation: Required Alignment of the Inertial Sensors for Acceptable Navigation Accuracies,” IEEE Transactions on Vehicular Technology, Vol. 57, No. 6, pp. 3402–3412, 2008.
[58] S. Taheri, An Investigation and Design of Slip Control Braking Systems Integrated with Four Wheel Steering, Ph.D. dissertation, Clemson Univ., 1990.
[59] H. S. Tan and J. Huang, “DGPS-Based Vehicle-To-Vehicle Cooperative Collision Avoidance Warning: Engineering Feasibility Viewpoints,” IEEE Transactions on Intelligent Transportation Systems, Vol. 7, No. 4, pp. 415–428, 2006.
[60] Y. Tang, Y. Wu, M. Wu, W. Wu, X. Hu, and L. Shen, “INS/GPS Integration: Global Observability Analysis,” IEEE Transactions on Vehicular Technology, Vol. 58, No. 3, pp. 1129–1142, 2009.
[61] U-CAR, from http://feature.u-car.com.tw/.
[62] E. Vinande, P. Axelrad, and D. Akos, “Mounting-Angle Estimation for Personal Navigation Devices,” IEEE Transactions on Vehicular Technology, Vol. 59, No. 3, pp. 1129–1138, 2009.
[63] O. Walter, J. Schmalenstroeer, A. Engler, and R. Haeb-Umbach, “Smartphone-Based Sensor Fusion for Improved Vehicular Navigation,” In WPNC, pp. 1–6, 2013.
[64] F. Wang, M. Yang, and R. Yang, “Conflict-Probability-Estimation-Based Overtaking for Intelligent Vehicles,” IEEE Transactions on Intelligent Transportation Systems, Vol. 10, No. 2, pp. 366–370, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-02-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-02-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw