進階搜尋


 
系統識別號 U0026-1111201419591600
論文名稱(中文) 以細胞及動物實驗探討氮/氬氣微電漿中產生反應氮/氧物種信息誘發傷口癒合程序
論文名稱(英文) Stimulation of wound healing process through ROS/RNS signals indirectly generated by N2/Ar micro-plasma - in vitro and in vivo studies
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 103
學期 1
出版年 103
研究生(中文) 吳氏明賢
研究生(英文) Minh-Hien Thi Ngo
學號 N58997017
學位類別 博士
語文別 英文
論文頁數 98頁
口試委員 指導教授-廖峻德
召集委員-蘇芳慶
口試委員-許藝菊
口試委員-王德華
口試委員-葉漢根
口試委員-王士豪
口試委員-田育彰
中文關鍵字 非熱微電漿  纖維細胞  增生  遷徙  纖維成長因子  二級燒傷  血管增生  上皮化  氧氣反應物種/氮氣反應物種信號  傷口癒合 
英文關鍵字 Non thermal micro-plasma  fibroblast cells  proliferation  migration  fibroblast growth factor  second degree burn wound  angiogenesis  epithelialization  ROS/RNS signals  wound healing 
學科別分類
中文摘要 本博士論文的研究主要是利用非熱氮氣/氬氣微電漿系統施行於小老鼠身上的纖維細胞及二級燒傷產生的傷口,藉以觀察微電漿裝置在傷口癒合過程之生物安全性和生物效益性。
本實驗相當具有挑戰性及富有變異性。本實驗主要的參變量是加入千分之五氮氣到氬氣電漿裝置,並應用十七瓦特的射頻供應器來當作電源的產生器。利用這些參變量來測量纖維細胞並觀察其在試管內的生物效應,並做一個整合性的多方位評估。
本研究之高度關注點為:經過四十八個鐘頭的細胞培育後,根據研究成果,細胞數量在電漿處理五秒及十秒之下成長了三倍之多;經過六個及十二個鐘頭的細胞培育後,細胞披覆率提升了足足二十個百分點,在相同的電漿處理時間之下。此外,千分之五的氮氣/氬氣微電漿系統處理的時間可較輕易地達到FGF7之受激釋放,進而增顯細胞增殖及遷徙。於此,使分子級上皮細胞再形成之機制便可透徹明瞭,儘管這個機制是何等的複雜和艱深。
另外,在試管內的研究方面,利用氮氣/氬氣微電漿系統和十三瓦特之電源在改善小老鼠身上的二級燒傷癒合情況,可觀察到組織修復並同時也進行分析,分析結果也正如預期是具有高度的吻合性及合理性。在小老鼠被電漿處理的傷口床身上有觀察到氧氣反應物種和氮氣反應物種之濃度有提高的走勢,隱約透露著血管增生和形成上皮細胞的信息。
縱觀而言,藉由本精緻的動物模型外加非熱氮氣/氬氣微電漿系統在小老鼠身上的處理,得到可被激活並促進傷口癒合的結論,因此一個可能的體內血管增生和上皮化過程的機制便這麼冠冕堂皇地誕生了。
英文摘要 In this work, non-thermal N2/Ar micro-plasma was applied to fibroblast cells and second degree burn in mice to investigate the bio-safety and bio-efficiency of micro-plasma device for wound healing process. With the main parameters are currently chosen by adding 0.5% N2 in argon plasma and supplying RF power of 17 W is first applied to fibroblast cells and induced the biological effect in vitro study. The cells number increased three folds for plasma exposure time of 5 or 10 sec, followed by cell culture for 48 hrs. The cell coverage rate rose 20% for the same plasma exposure time, followed by cell culture for 6 or 12 hrs. 0.5% N2/Ar micro-plasma exposure can particularly be used to achieve the stimulated release of FGF7 and subsequent enhancement of cells proliferation and migration. A possible mechanism for re-epithelialization at the molecular level will be proposed based on the results of this work. Based on the results in vitro study, N2/Ar micro-plasma with supplying power of 13 W was applied to improve healing on the second degree burn wound mice followed by repairing tissue assessments. ROS/RNS signals from the increase of ROS/RNS concentration around the plasma-exposed wound bed are most probably correlated with the angiogenesis and epithelialization processes. From this animal model, non-thermal N2/Ar micro-plasma is presumably effective for the stimulation of burn wound healing on mice, a possible in vivo mechanism for the enhanced angiogenesis and epithelialization processes in the plasma-exposed mice is thereafter proposed.
論文目次 摘要…………………………………………………………………………………………...i
Abstract……………………………………………………………………………………....ii
Acknowledgement………………………………………………………………………......iii
Contents………………………………………………………………………………….......iv
List of tables…………….…………………………………………………...………….......vii
List of Figures…………….…………………………….…………………...………….......vii
Chapter 2: Introduction 1
1.2. Background 1
1.2. Motivation and objective 4
Chapter 2: Literature survey 5
2.1. Wound healing process and current healing techniques 5
2.1.1. Classic stages of Wound healing process 5
2.1.2. Current techniques for treatment and analysis the healing process 8
2.1.2.1. Negative pressure therapy 8
2.1.2.2. Laser therapy 9
2.1.2.3. Dressing therapy 11
2.1.2.4. Micro-plasma treatment 14
2.1.2.5. Analysis techniques 15
2.2. Fibroblast growth factor (FGFs) in wound healing process 20
2.3. Micro-plasma and the important role of ROS/RNS singnals in wound healing 24
2.4. Sub-summary 30
Chapter 3: Materials and Methods 31
3.1. Micro-plasma diagnosis and Reactive plasma species kinetics 31
3.1.1. Micro-plasma system 31
3.1.2. Plasma plume temperature 33
3.1.3. RPS measuring using Optical Emission Spectroscopy 34
3.1.4. ROS in plasma-exposed medium 36
3.1.5. Ex vivo experiment for ROS/RNS measurements 37
3.2. In vitro study of N2/Ar micro-plasma on fibroblast cell functions 38
3.2.1. Sample preparation 40
3.2.1.1. Fibroblast cell (L929) culture 40
3.2.1.2. Cell proliferation and cell coverage test in vitro model 40
3.2.2. Cell functions after micro-plasma exposure analysis 42
3.2.2.1. LDH leakage 42
3.2.2.2. Release of FGF7 42
3.3. In vivo study in mice with burn wounds 43
3.3.1. Animal model and study groups 44
3.3.2. Non-invasive assessments (OCT and Laser Doppler analysis) 47
3.3.3. Invasive assessments 48
3.3.3.1. Histopathological 48
3.3.3.2. Immunohistochemical analyses 48
3.4. Stathistical analysis 43
Chapter 4: Fibroblast cell proliferation and migration stimulate through the release of FGF7 induced by ROS/RNS signals in vitro study 50
4.1. Plasma plume temperature of micro-plasma in vitro study 50
4.2. Semi-quantitative analysis of OES 51
4.3. ROS in the plasma-exposed cell-containing medium 53
4.4. LDH leakage 54
4.5. Stimulation of fibroblast cell proliferation and migration 55
4.5.1. Fibroblast cell proliferation 55
4.5.2. Cell coverage (Fibroblast cell migration) 56
4.6. Release of FGF7 in the plasma-exposed cell-containing medium 57
4.8. Discussion 59
4.8. Sub-summary 61
Chapter 5: Enhancement angiogenesis and epithelialization processes in the experimental 2nd burn wound in mice through ROS/RNS signals in vivo study ……63
5.1. Plasma plume temperature and semi quantitative analysis of OES in vivo study ..63
5.2. ROS/RNS in the plasma-exposed tissue lysate ………...66
5.3. Wound closure kinetics 68
5.3. Inflammatory responses and proliferation phase 69
5.3.1. Inflammatory responses .69
5.3.2. Proliferation phase 71
5.4. Enhancement of blood flow and formation of blood vessels 74
6.4. Discussion 77
6.5. Sub-summary 80
Chapter 6: Conclusion 81
Future work 82
References.. 82
Appendices 92
參考文獻 [1] S. Kalghatgi, G. Friedman, A. Fridman, A. M. Clyne, "Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release", Annual Biomedical Engineering, 38, 3, 748-757, 2010.
[2] S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, Fridman, A. G. Friedman, J. Azizkhan-Clifford, "Effects of Non-Thermal Plasma on Mammalian Cells", Plos One, 6, 1, e16270, 2011.
[3] Y. Y. Huang, S. K. Sharma, J. Carroll, M. R. Hamblin, "Biphasic dose response in low level light therapy - an update", Dose Response, 9, 4, 602-618, 2011.
[4] J. S. Knabl, G. S. Bayer, W. A. Bauer, I. Schwendenwein, P. F. Dado, C. Kucher, R. Horvat, E. Turkof, B. Schossmann, G. Meissl, "Controlled partial skin thickness burns: an animal model for studies of burnwound progression", Burns, 25, 3, 229-235, 1999.
[5] G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, A. Fridman, "Applied plasma medicine", Plasma Processes Polymers, 5, 6, 503-533, 2008.
[6] S. A. Ermolaeva, O. F. Petrov, G. G. Miller, I. A. Shaginian, B. S. Naroditskii, E. V. Sysoliatina, A. Mukhachev, G. E. Morfill, V. E. Fortov, A. I. Grigor, "Prospects for the use of low-temperature gas plasma as an antimicrobial agent", Vestnik Rossiiskoi akademii meditsinskikh nauk / Rossiiskaia akademiia meditsinskikh nauk , 10, 15-21, 2011.
[7] A. V. Nastuta, I. Topala, C. Grigoras, V. Pohoata, G. Popa, "Stimulation of wound healing by helium atmospheric pressure plasma treatment", Journal of Physics D: Applied Physics, 44, 10, 105204, 2011.
[8] A. Fridman, A. Chirokov, A. Gutsol, "Non-thermal atmospheric pressure discharges", Journal of Physic D: Apply Physic, 38, 2, R1-R24, 2005.
[9] D. Staack, A. Fridman, A. Gutsol, Y. Gogotsi, G. Friedman, "Nanoscale Corona Discharge in Liquids, Enabling Nanosecond Optical Emission Spectroscopy", Angew Chem Int Edit, 47, 42, 8020-8024, 2008.
[10] G. C. Gurtner, S. Werner, Y. Barrandon, M. T. Longaker, "Wound repair and regeneration", Nature, 453, 7193, 314-321, 2008.
[11] K. A. Bielefeld, S. Amini-Nik, B. A. Alman, "Cutaneous wound healing: recruiting developmental pathways for regeneration", Cell Mol Life Science, 70, 12, 2059-2081, 2013.
[12] E. A. Gantwerker, D. B. Hom, "Skin: Histology and Physiology of Wound Healing", Facial Plastic Surgery Clinics of North America, 19, 3, 441-453, 2011.
[13] P. Martin, S. J. Leibovich, :Inflammatory cells during wound repair: the good, the bad and the ugly", Trends Cell Biol, 15, 11, 599-607, 2005.
[14] R. Grose, S. Werner, "Wound-healing studies in transgenic and knockout mice", Mol Biotechnology, 28, 2, 147-166, 2004.
[15] S. Sen, D. Greenhalgh, T. Palmieri, "Review of burn research for the year 2010", Journal of burn care & research : official publication of the American Burn Association, 33, 5, 577-586, 2012.
[16] S. Monstrey, H. Hoeksema, J. Verbelen, A. Pirayesh, P. Blondeel, "Assessment of burn depth and burn wound healing potential", Burns, 34, 6, 761-769, 2008.
[17] X. Feng, G. Cheng, S. Y. Chen, H. Yang, W. Huang, "Evaluation of the burn healing properties of oil extraction from housefly larva in mice", Journal of Ethnopharmacology, 130, 3, 586-592, 2010.
[18] G. Sun, X. Zhang, Y. I. Shen, R. Sebastian, L. E. Dickinson, K. Fox-Talbot, M. Reinblatt, C. Steenbergen, J. W. Harmon, S. Gerecht, "Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing", Proceedings of the National Academy of Sciences of the United States of America, 108, 52, 20976-20981, 2011.
[19] P. Carmeliet, R. K. Jain, "Angiogenesis in cancer and other diseases", Nature, 407, 6801, 249-257, 2000.
[20] P. Carmeliet, "Mechanisms of angiogenesis and arteriogenesis", Nature medicine, 6, 4, 389-395, 2000.
[21] Y. R. Kuo, F. S. Wang, S. F. Jeng, B. S. Lutz, H. C. Huang, K. D. Yang, "Nitrosoglutathione improves blood perfusion and flap survival by suppressing iNOS but protecting eNOS expression in the flap vessels after ischemia/reperfusion injury", Surgery, 135, 4, 437-446, 2004.
[22] M. B. Witte, A. Barbul, "Role of nitric oxide in wound repair", The American Journal of Surgery, 183, 4, 406-412, 2002.
[23] L. Lindblom, J. Cassuto, L. Yregård, U. Mattsson, P. Tarnow, R. Sinclair, "Role of nitric oxide in the control of burn perfusion", Burns, 26, 1, 19-23, 2000.
[24] S. Ichioka, H. Watanabe, N. Sekiya, M. Shibata, T. Nakatsuka, "A technique to visualize wound bed microcirculation and the acute effect of negative pressure", Wound Repair and Regeneration, 16, 3, 460-465, 2008.
[25] S. Z. Chen, J. Li, X. Y. Li, L. S. Xu, "Effects of Vacuum-assisted Closure on Wound Microcirculation: An Experimental Study", Asian Journal of Surgery, 28, 3, 211-217, 2005.
[26] G. S. Andreassen, J. E. Madsen, "A simple and cheap method for vacuum-assisted wound closure", Acta Orthop, 77, 5, 820-824, 2006.
[27] H. S. Birke, M. Malmsjo, P. Rome, D. Hudson, E. Krug, L. Berg, A. Bruhin, C. Caravaggi, M. Chariker, M. Depoorter, "Evidence-based recommendations for negative pressure wound therapy: Treatment variables (pressure levels, wound filler and contact layer) – Steps towards an international consensus", Journal of Plastic, Reconstructive & Aesthetic Surgery, 64, Supplement 1, 0, S1-S16, 2011.
[28] G. Y. Lee, W. S. Kim, "The systemic effect of 830-nm LED phototherapy on the wound healing of burn injuries: A controlled study in mouse and rat models", Journal of cosmetic and laser therapy : official publication of the European Society for Laser Dermatology, 14, 2, 107-110, 2012.
[29] K. E. Sullins, "Lasers and wound healing: Practical uses", Clinical Techniques in Equine Practice, 3, 2, 182-187, 2004.
[30] H. T. Whelan, R. L. Smits, E. V. Buchman, N. T. Whelan, S. G. Turner, D. A. Margolis, V. Cevenini, H. Stinson, R. Ignatius, T. Martin, "Effect of NASA light-emitting diode irradiation on wound healing", Journal of Clinical Laser Medical Surgergy, 19, 6, 305-314, 2001.
[31] K. Gaida, R. Koller, C. Isler, O. Aytekin, M. Al-Awami, G. Meissl, M. Frey, "Low Level Laser Therapy--a conservative approach to the burn scar?", Burns : journal of the International Society for Burn Injuries, 30, 4, 362-367, 2004.
[32] H. Demir, S. Yaray, M. Kirnap, K. Yaray, "Comparison of the effects of laser and ultrasound treatments on experimental wound healing in rats", J Rehabil Res Dev, 41, 5, 721-728, 2004.
[33] S. Yuhua, L. Ligen, C. Jiake, S. Tongzhu, "Effect of Poloxamer 188 on deepening of deep second-degree burn wounds in the early stage", Burns, 38, 1, 95-101, 2012.
[34] H. Baskaran, M. Toner, M. L. Yarmush, F. Berthiaume, "Poloxamer-188 Improves Capillary Blood Flow and Tissue Viability in a Cutaneous Burn Wound", Journal of Surgical Research, 101, 1, 56-61, 2001.
[35] S. A. Birchenough, G. T. Rodeheaver, R. F. Morgan, S. M. Peirce, A. J. Katz, "Topical poloxamer-188 improves blood flow following thermal injury in rat mesenteric microvasculature", Annals of plastic surgery, 60, 5, 584-588, 2008.
[36] S. Pereira Ddos, M. H. Lima-Ribeiro, R. Santos-Oliveira, L. C. Cavalcanti, N. T. Pontes-Filho, L. C. Coelho, A. M. Carneiro-Leao, M. T. Correia, "Topical application effect of the isolectin hydrogel (Cramoll 1,4) on second-degree burns: experimental model", Journal of biomedicine & biotechnology, 2012, 184538, 2012.
[37] M.S. Correia, L. B. B. Coelho, "Purification of a glucose/mannose specific lectin, isoform 1, from seeds of Cratylia mollis mart. (Camaratu Bean)", Appl Biochem Biotechnol, 55, 3, 261-273, 1995.
[38] E. García-Alcantara, R. López-Callejas, P. R. Morales-Ramírez, R. Peña-Eguiluz, R. Fajardo-Muñoz, A. Mercado-Cabrera, S. R. Barocio, R. Valencia-Alvarado, B. G. Rodríguez-Méndez, A. E. Muñoz-Castro, "Accelerated Mice Skin Acute Wound Healing In Vivo by Combined Treatment of Argon and Helium Plasma Needle", Archives of Medical Research, 44, 3, 169-177, 2013.
[39] S. D. Gan, K. R. Patel, "Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay", J Invest Dermatol, 133, 9, e12, 2013.
[40] A. Serov, B. Steinacher, T. Lasser, "Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera", Opt Express, 13, 10, 3681-3689, 2005.
[41] J. D. Briers, "Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging", Physiological measurement, 22, 4, R35-66, 2001.
[42] R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, R. Lindsay, "Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods", Burns, 29(3):199-206, 2003.
[43] J. Welzel, "Optical coherence tomography in dermatology: a review", Skin Res Technol, 7, 1, 1-9, 2001.
[44] M. Mogensen, H. A. Morsy, L. Thrane, G. B. Jemec, "Morphology and epidermal thickness of normal skin imaged by optical coherence tomography", Dermatology, 217, 1, 14-20, 2008.
[45] T. Gambichler, S. Boms, M. Stucker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, K. Hoffmann, "Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology", Arch Dermatol Res, 297, 5, 218-225, 2005.
[46] S. Werner, R. Grose, "Regulation of wound healing by growth factors and cytokines", Physiological reviews, 83, 3, 835-870, 2003.
[47] Y. R. Yun, J. E. Won, E. Jeon, S. Lee, W. Kang, H. Jo, J. H. Jang, U. S. Shin, H. W. Kim, "Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration", Journal of Tissue Engineering, 1, 1, 2010.
[48] H. Steiling, T. Wustefeld, P. Bugnon, M. Brauchle, R. Fassler, D. Teupser, J. Thiery, J.I. Gordon, C. Trautwein, S. Werner, "Fibroblast growth factor receptor signalling is crucial for liver homeostasis and regeneration", Oncogene, 22, 28, 4380-4388, 2003.
[49] V. P. Eswarakumar, I. Lax, J. Schlessinger, "Cellular signaling by fibroblast growth factor receptors", Cytokine Growth Factor Rev, 16, 2, 139-149, 2005.
[50] M. Katoh, "FGF signaling network in the gastrointestinal tract (review)", Int J Oncol, 29, 1, 163-168, 2006.
[51] L. Dailey, D. Ambrosetti, A. Mansukhani, C. Basilico, "Mechanisms underlying differential responses to FGF signaling", Cytokine Growth Factor Rev, 16, 2, 233-247, 2005.
[52] S. Braun, U. Keller, H. Steiling, S. Werner, "Fibroblast growth factors in epithelial repair and cytoprotection", Philos Trans R Soc Lond B Biol Sci, 359, 1445, 753-757, 2004.
[53] A. Grill, "Cold Plasma in Material Fabrication", New York, IEEE Press; 1994.
[54] D. D. W. Hsu, "Characteristics and Applications of High Pressure Microplasmas. Berkeley", University of California at Berkeley; 2003.
[55] Y. Kusano, "Atmospheric pressure plasma processing for polymer adhesion: A review", Journal of Adhesion, 90, 9, 755-777, 2014.
[56] M. Laroussi, T. Akan, "Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review", Plasma Process Polym 2007, 4(9):777-788.
[57] "Microplasmas: scientific challenges & technological opportunities", The European Physical Journal D, 2010.
[58] J. Meichsner, "Low Temperature Plasmas. In: Plasma Physics", Edited by Dinklage A, Klinger T, Marx G, Schweikhard L, vol. 670: Springer Berlin Heidelberg;: 95-116, 2005.
[59] A. Ağıral, "Electron Driven Chemistry in Microreactors", Enschede, The Netherlands: University of Twente; 2009.
[60] R. Hippler, H. Kersten, M. Schmidt, K. H. Schoenbach, "Low Temperature Plamsma: Fundamentals, Technologies, and Techniques", Weiheim, Germany: Wiley-VCH; 2008.
[61] J. Janča, M. Klı́ma, P. Slavı́ček, L. Zajı́čková, "HF plasma pencil - new source for plasma surface processing", Surface & Coatings Technology, 116, 547-551, 1999.
[62] I. E. Kieft, D. Darios, A. J. M. Roks, E. Stoffels, "Plasma treatment of mammalian vascular cells: A quantitative description", IEEE Transactions on Plasma Science, 33, 2, 771-775, 2005.
[63] F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, M. G. Kong, "Microplasmas: Sources, Particle Kinetics, and Biomedical Applications", Plasma Process Polym, 5, 4, 322-344, 2008.
[64] A. Chirokov, A. Gutsol, A. Fridman, "Atmospheric pressure plasma of dielectric barrier discharges", Pure Appl Chem, 77, 2, 487-495, 2005.
[65] T. Shimizu, J. L. Zimmermann, G. E. Morfill, "The bactericidal effect of surface micro-discharge plasma under different ambient conditions", New Journal of Physics, 13, 2, 023026, 2011.
[66] M leduc, R. L. Leask, S. Coulombe, "Cell permeabilization using a non-thermal plasma". New J Phys, 11, 115021, 2009.
[67] Cold atmospheric pressure plasma jet interactions with plasmid DNA. Appl Phys Lett, 98, 4, 043701, 2011.
[68] "Plasmas for medicine", Physics Reports, 530, 4, 291320, 2013.
[69] E. Stoffels, Y. Sakiyama, D. B. Graves, "Cold Atmospheric Plasma: Charged Species and Their Interactions With Cells and Tissues", Plasma Science, IEEE Transactions on, 36, 4, 1441-1457, 2008.
[70] G. Dilecce, "Optical spectroscopy diagnostics of discharges at atmospheric pressure", Plasma Sources Science and Technology, 23, 1, 015011, 2014.
[71] H. S. Park, S. J. Kim, H. M. Joh, T. H. Chung, S. H. Bae, S. H. Leem, "Optical and electrical characterization of an atmospheric pressure microplasma jet with a capillary electrode", Phys Plasmas, 17, 3, 2010.
[72] R. S. Tipa, G. M. W. Kroesen, "Plasma-Stimulated Wound Healing", Ieee T Plasma Sci, 39, 11, 2978-2979, 2011.
[73] A. P. Thorne, "Spectrophysics", New York: Chapman and Hall; 1988.
[74] U. Fantz, "Basics of plasma spectroscopy", Plasma Sources Science & Technology, 15, 4, S137-S147, 2006.
[75] D. Tavares Pereira, M. H. M. Lima-Ribeiro, N. T. Pontes-Filho, L. Carneiro, M. T. Correia, "Development of Animal Model for Studying Deep Second-Degree Thermal Burns", Journal of Biomedicine and Biotechnology, 2012, 7, 2012.
[76] C. Gaines, D. Poranki, W. Du, R. A. F. Clark, M. Van Dyke, "Development of a porcine deep partial thickness burn model", Burns, 39, 2, 311-319, 2013.
[77] R. B. Mikkelsen, P. Wardman, "Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms", Oncogene, 22, 37, 5734-5754, 2003.
[78] S. Cardaci, G. Filomeni, G. Rotilio, M. R. Ciriolo, "Reactive oxygen species mediate p53 activation and apoptosis induced by sodium nitroprusside in SH-SY5Y cells", Molecular pharmacology, 74, 5, 1234-1245, 2008.
[79] E. Sattler, R. Kastle, J. Welzel, "Optical coherence tomography in dermatology", Journal of biomedical optics, 18(6):061224, 2013.
[80] M. H. T. Ngo, J. D. Liao, P. L. Shao, C. C. Weng, C. Y. Chang, "Increased Fibroblast Cell Proliferation and Migration Using Atmospheric N2/Ar Micro-Plasma for the Stimulated Release of Fibroblast Growth Factor-7", Plasma Process Polym, 11, 1, 80-88, 2014.
[81] D. B. Graves, "The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology", Journal of Physics D: Applied Physics, 45, 26, 263001, 2012.
[82] H. D. Beer, M. G. Gassmann, B. Munz, H. Steiling, F. Engelhardt, K. Bleuel, S. Werner, "Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair", The journal of investigative dermatology Symposium proceedings / the Society for Investigative Dermatology, Inc [and] European Society for Dermatological Research, 5, 1, 34-39, 2000.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-11-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-11-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw