系統識別號 U0026-1109201721502300
論文名稱(中文) 以生物特性解釋氣候變遷下全球鳥類海拔分布之反應
論文名稱(英文) Species Traits Explain Elevational Range Shifts of Birds
校院名稱 成功大學
系所名稱(中) 生命科學系
系所名稱(英) Department of Life Sciences
學年度 105
學期 2
出版年 106
研究生(中文) 羅祈鈞
研究生(英文) Chi-Chun Lo
學號 l56034196
學位類別 碩士
語文別 英文
論文頁數 43頁
口試委員 指導教授-陳一菁
中文關鍵字 氣候變遷  分布變化  生物特性  鳥類  整合分析 
英文關鍵字 climate change  range shift  species trait  bird  meta-analysis 
中文摘要 許多研究指出生物會往高緯度、高海拔移動以因應氣候變遷,然而,物種的分布變化在程度與方向上卻存在種間差異。由於物種獨特的性狀與環境需求皆會直接或間接地影響物種對氣候變遷的反應能力,因此分布變化的種間差異極可能是受到不同的生物特性所影響。雖然目前已有許多研究利用生物特性探討物種分布變化,但生物特性與分布變化間的關係至今仍未有共識。各研究結果有所差異的原因可能是因為各研究侷限於不同的類群與地區,甚至採用不同調查方法及不同的生物特性定義所致。為釐清此關係,本研究以整合分析(meta-analysis)統整目前已發表之鳥類海拔分布變化的研究,以一致的標準定義可能影響分布變化的生物特性,並考量研究方法的影響,以生物特性解釋全球尺度下物種的分布變化。此外,氣候變遷的預期是物種往高海拔移動,若往反方向移動反應可能受到不同的機制影響,因此本研究分別檢視物種分布變化的方向及上下移動的程度。我們蒐集337種鳥類的海拔分布變化,範圍橫跨熱帶及溫帶,以一致的標準定義物種的食性、體型、窩卵數、分布大小、分布族群以及溫度耐受性,檢驗氣候變遷下全球鳥類的海拔分布變化。整體而言,58%的物種往高海拔移動。小體型與高溫耐受度高的物種會傾向往高海拔移動,廣泛分布物種之上移程度較大;而主要食性解釋了物種下移的程度,草食性物種之下移程度較大。體型大小之所以能有效解釋物種在方向上的分布變化,可能是由於小體型物種的生活史長度較短且族群成長率較高;而分布範圍則代表著棲地廣度,分布廣之物種較能快速適應新的環境,以至於上移程度較大。這樣的比較研究強調特定生物特性解釋物種分布變化的相對重要性,進而了解物種反應氣候變遷的種間差異原因。
英文摘要 Species traits are likely associated with species’ idiosyncratic range shifts under climate change because some traits reflecting species’ sensitivity and capacity. However, there is little consensus about what kind of traits explain range shifts well. Inconsistent findings may result from definition of species traits varies among studies, or limited number of species restricted to certain ecosystem. Here, we conducted meta-analysis of birds’ elevational range shift and control for potential biases such as methodological differences. We used identical standard to redefine species traits, including diet, body size, clutch size, range size, subpopulation of distribution and thermal traits. Specifically, we extracted distributional temperatures (DTmax and DTrange) from each species’ breeding range to represent thermal traits. Generally, 58% of all species moved to higher elevation. Species shifted upward, in comparison with those moved toward opposite direction, were smaller in body size and higher in DTmax. And widely distributed species exhibited greater extent of upward movements, while herbivores tended to shift further down than carnivores. We found that body size explained range shifts better than other traits, indicating the relative importance in the mechanism of species redistribution. It may be because small species have short life histories, which were associated with high population growth rates; thus they have strong capability to respond to climate change. And widely distributed species are likely associated with traits enable them to move upwards. This study emphasizes the generality and power of specific species traits to explain range shifts and also realizes species’ capability to respond to climate change, which will be crucial to conservation practices.
口試合格證明 i
摘要 ii
致謝 iv
1.1. Anthropogenic climate change and biological impacts 1
1.2. Species redistribution under climate change 1
1.3. Trait-based approaches 2
1.4. Inconsistent result regarding species traits in explaining range shifts under climate change 2
1.5. Potential causes of inconsistent result 3
1.6. Purpose 4
2.1. Data collection 6
2.1.1. Range shift dataset 6
2.1.2. Phylogenies 6
2.1.2. Methodological approaches 7
2.1.3. Species traits 7
2.2. Statistical analyses 8
2.2.1. Controlling for methodological biases 8
2.2.2. Species trait analyses 9
2.2.3. Species trait Analyses with phylogenetic comparative methods 10
3.1. Controlling for methodological biases 11
3.2. Species trait analyses 11
4.1. The impacts of methodological attributes on species’ distributional response among studies 13
4.2. Comparisons to studies in our dataset 14
4.3. The relationship examinations between range shifts and species traits by controlling methodological biases 15
參考文獻 Addo-Bediako, A., S. L. Chown, and K. J. Gaston. 2000. Thermal tolerance, climatic variability and latitude. Proc Biol Sci 267:739-745.
Aguirre-Gutierrez, J., W. D. Kissling, L. G. Carvalheiro, M. F. WallisDeVries, M. Franzen, and J. C. Biesmeijer. 2016. Functional traits help to explain half-century long shifts in pollinator distributions. Sci Rep 6:24451.
Alice Boyle, W., B. K. Sandercock, and K. Martin. 2016. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: a meta-analysis. Biol Rev Camb Philos Soc 91:469-482.
Angert, A. L., L. G. Crozier, L. J. Rissler, S. E. Gilman, J. J. Tewksbury, and A. J. Chunco. 2011. Do species' traits predict recent shifts at expanding range edges? Ecol Lett 14:677-689.
Archaux, F. 2004. Breeding upwards when climate is becoming warmer: no bird response in the French Alps. Ibis 146:138-144.
Auer, S. K., and D. I. King. 2014. Ecological and life-history traits explain recent boundary shifts in elevation and latitude of western North American songbirds. Global Ecology and Biogeography 23:867-875.
Bartoń, K. 2016. MuMIn: multi-model inference. R package. Version 1.5.6. R package version 1.
Bates, D., M. Machler, B. M. Bolker, and S. C. Walker. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67:1-48.
Bestion, E., J. Clobert, and J. Cote. 2015. Dispersal response to climate change: scaling down to intraspecific variation. Ecol Lett 18:1226-1233.
Betzholtz, P. E., L. B. Pettersson, N. Ryrholm, and M. Franzen. 2013. With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet. Proc Biol Sci 280:20122305.
BirdLife International, and NatureServe. 2014. Bird species distribution maps of the world., BirdLife International Cambridge, UK, and NatureServe, Arlington, VA, USA.
Blueweiss, L., H. Fox, V. Kudzma, D. Nakashima, R. Peters, and S. Sams. 1978. Relationships between body size and some life history parameters. Oecologia 37:257-272.
Brown, C. J., M. I. O'Connor, E. S. Poloczanska, D. S. Schoeman, L. B. Buckley, M. T. Burrows, C. M. Duarte, B. S. Halpern, J. M. Pandolfi, C. Parmesan, and A. J. Richardson. 2016. Ecological and methodological drivers of species' distribution and phenology responses to climate change. Glob Chang Biol 22:1548-1560.
Buckley, L. B., and J. G. Kingsolver. 2012. Functional and Phylogenetic Approaches to Forecasting Species' Responses to Climate Change. Annual Review of Ecology, Evolution, and Systematics, Vol 43 43:205-+.
Burnham, K. P., and D. R. Anderson. 2003. Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media.
Chen, I. C., J. K. Hill, R. Ohlemuller, D. B. Roy, and C. D. Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. SCIENCE 333:1024-1026.
Chuang, A., and C. R. Peterson. 2016. Expanding population edges: theories, traits, and trade-offs. Glob Chang Biol 22:494-512.
Comte, L., J. Murienne, and G. Grenouillet. 2014. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat Commun 5:5023.
Crick, H. Q. P. 2004. The impact of climate change on birds. Ibis 146:48-56.
del Hoyo, J., A. Elliott, J. Sargatal, D. A. Christie, and E. de Juana. 2016. Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona.
DeLuca, W. V., and D. I. King. 2016. Montane birds shift downslope despite recent warming in the northern Appalachian Mountains. Journal of Ornithology 158:493-505.
ESRI. 2015. ArcGIS Desktop: Release 10.3.1. Environmental Systems Research Institute, Redlands (C.A.).
Estrada, A., C. Meireles, I. Morales-Castilla, P. Poschlod, D. Vieites, M. B. Araujo, and R. Early. 2015. Species' intrinsic traits inform their range limitations and vulnerability under environmental change. Global Ecology and Biogeography 24:849-858.
Estrada, A., I. Morales-Castilla, P. Caplat, and R. Early. 2016. Usefulness of Species Traits in Predicting Range Shifts. Trends Ecol Evol 31:190-203.
Foden, W. B., S. H. Butchart, S. N. Stuart, J. C. Vie, H. R. Akcakaya, A. Angulo, L. M. DeVantier, A. Gutsche, E. Turak, L. Cao, S. D. Donner, V. Katariya, R. Bernard, R. A. Holland, A. F. Hughes, S. E. O'Hanlon, S. T. Garnett, C. H. Sekercioglu, and G. M. Mace. 2013. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8:e65427.
Forero-Medina, G., J. Terborgh, S. J. Socolar, and S. L. Pimm. 2011. Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures. PLoS One 6:e28535.
Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist 160:712-726.
Freeman, B. G., and A. M. Class Freeman. 2014. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proc Natl Acad Sci U S A 111:4490-4494.
Garamszegi, L. Z. 2014. Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice. Springer.
Hickling, R., D. B. Roy, J. K. Hill, R. Fox, and C. D. Thomas. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450-455.
Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978.
Jetz, W., G. H. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. 2012. The global diversity of birds in space and time. Nature 491:444-448.
Jetz, W., G. H. Thomas, J. B. Joy, D. W. Redding, K. Hartmann, and A. O. Mooers. 2014. Global distribution and conservation of evolutionary distinctness in birds. Curr Biol 24:919-930.
Kamilar, J. M., and N. Cooper. 2013. Phylogenetic signal in primate behaviour, ecology and life history. Philos Trans R Soc Lond B Biol Sci 368:20120341.
Khaliq, I., C. Hof, R. Prinzinger, K. Bohning-Gaese, and M. Pfenninger. 2014. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc Biol Sci 281:20141097.
Laube, I., H. Korntheuer, M. Schwager, S. Trautmann, C. Rahbek, and K. Bohning-Gaese. 2013. Towards a more mechanistic understanding of traits and range sizes. Global Ecology and Biogeography 22:233-241.
Lenoir, J., J. C. Gegout, A. Guisan, P. Vittoz, T. Wohlgemuth, N. E. Zimmermann, S. Dullinger, H. Pauli, W. Willner, and J. C. Svenning. 2010. Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33:295-303.
Lenoir, J., J. C. Gegout, P. A. Marquet, P. de Ruffray, and H. Brisse. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768-1771.
MacLean, S. A., and S. R. Beissinger. 2017. Species' traits as predictors of range shifts under contemporary climate change: A review and meta-analysis. Glob Chang Biol. 00:1-12.
Menendez, R., A. Gonzalez-Megias, P. Jay-Robert, and R. Marquez-Ferrando. 2014. Climate change and elevational range shifts: evidence from dung beetles in two European mountain ranges. Global Ecology and Biogeography 23:646-657.
Monleon, V. J., and H. E. Lintz. 2015. Evidence of tree species' range shifts in a complex landscape. PLoS One 10:e0118069.
Munkemuller, T., S. Lavergne, B. Bzeznik, S. Dray, T. Jombart, K. Schiffers, and W. Thuiller. 2012. How to measure and test phylogenetic signal. Methods in Ecology and Evolution 3:743-756.
Paaijmans, K. P., R. L. Heinig, R. A. Seliga, J. I. Blanford, S. Blanford, C. C. Murdock, and M. B. Thomas. 2013. Temperature variation makes ectotherms more sensitive to climate change. Glob Chang Biol 19:2373-2380.
Pacifici, M., W. B. Foden, P. Visconti, J. E. M. Watson, S. H. M. Butchart, K. M. Kovacs, B. R. Scheffers, D. G. Hole, T. G. Martin, H. R. Akcakaya, R. T. Corlett, B. Huntley, D. Bickford, J. A. Carr, A. A. Hoffmann, G. F. Midgley, P. Pearce-Kelly, R. G. Pearson, S. E. Williams, S. G. Willis, B. Young, and C. Rondinini. 2015. Assessing species vulnerability to climate change. Nature Climate Change 5:215-225.
Parmesan, C. 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chang Biol 13:1860-1872.
Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-42.
Perry, A. L., P. J. Low, J. R. Ellis, and J. D. Reynolds. 2005. Climate change and distribution shifts in marine fishes. Science 308:1912-1915.
Popy, S., L. Bordignon, and R. Prodon. 2010. A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. Journal of Biogeography 37:57-67.
Poyry, J., M. Luoto, R. K. Heikkinen, M. Kuussaari, and K. Saarinen. 2009. Species traits explain recent range shifts of Finnish butterflies. Glob Chang Biol 15:732-743.
R Development Core Team. 2016. TEAM 2016: R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Reif, J., and J. Flousek. 2012. The role of species' ecological traits in climatically driven altitudinal range shifts of central European birds. Oikos 121:1053-1060.
Reif, J., Z. Vermouzek, P. Vorisek, K. Stastny, V. Bejcek, and J. Flousek. 2010. Population changes in Czech passerines are predicted by their life-history and ecological traits. Ibis 152:610-621.
Rubolini, D., A. Liker, L. Z. Garamszegi, A. P. Moller, and N. Saino. 2015. Using the BirdTree.org website to obtain robust phylogenies for avian comparative studies: A primer. Current Zoology 61:959-965.
Sheldon, K. S., S. Yang, and J. J. Tewksbury. 2011. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecol Lett 14:1191-1200.
Slatyer, R. A., M. Hirst, and J. P. Sexton. 2013. Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett 16:1104-1114.
Stocker, T., D. Qin, G. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. Midgley. 2013. IPCC, 2013: Summary for Policymakers. In Climate Change 2013: The Physical Science Basis.
Sunday, J. M., A. E. Bates, and N. K. Dulvy. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proc Biol Sci 278:1823-1830.
Sunday, J. M., A. E. Bates, and N. K. Dulvy. 2012. Thermal tolerance and the global redistribution of animals. Nature Climate Change 2:686-690.
Sunday, J. M., G. T. Pecl, S. Frusher, A. J. Hobday, N. Hill, N. J. Holbrook, G. J. Edgar, R. Stuart-Smith, N. Barrett, T. Wernberg, R. A. Watson, D. A. Smale, E. A. Fulton, D. Slawinski, M. Feng, B. T. Radford, P. A. Thompson, and A. E. Bates. 2015. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol Lett 18:944-953.
Telwala, Y., B. W. Brook, K. Manish, and M. K. Pandit. 2013. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS One 8:e57103.
Thuiller, W., S. Lavorel, G. Midgley, S. Lavergne, and T. Rebelo. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85:1688-1699.
Van Der Hammen, T., and H. Hooghiemstra. 2000. Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews 19:725-742.
Williams, S. E., L. P. Shoo, J. L. Isaac, A. A. Hoffmann, and G. Langham. 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 6:2621-2626.
Willis, S. G., W. Foden, D. J. Baker, E. Belle, N. D. Burgess, J. A. Carr, N. Doswald, R. A. Garcia, A. Hartley, C. Hof, T. Newbold, C. Rahbek, R. J. Smith, P. Visconti, B. E. Young, and S. H. M. Butchart. 2015. Integrating climate change vulnerability assessments from species distribution models and trait-based approaches. Biological Conservation 190:167-178.
Zuckerberg, B., A. M. Woods, and W. F. Porter. 2009. Poleward shifts in breeding bird distributions in New York State. Glob Chang Biol 15:1866-1883.
  • 同意授權校內瀏覽/列印電子全文服務,於2020-06-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-06-23起公開。

  • 如您有疑問,請聯絡圖書館