進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1109201712421100
論文名稱(中文) 鞋墊形無線多電極生醫電阻抗系統之研究
論文名稱(英文) The study of wireless multi-electrode bioimpedance system insoles
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 王思蘋
研究生(英文) Sih-Ping Wang
學號 P86024124
學位類別 碩士
語文別 英文
論文頁數 49頁
口試委員 指導教授-鄭國順
口試委員-孫永年
口試委員-王士豪
口試委員-王明習
口試委員-林灶生
口試委員-黃基哲
中文關鍵字 生醫電阻抗  無線傳輸  多電極  鞋墊 
英文關鍵字 bioimpedance  wireless transmission  multi-electrode  insoles 
學科別分類
中文摘要 隨著糖尿病人口的急遽增加,而糖尿病足是最常見的慢性併發症,它包括神經性病變、血管病變和血管合併神經性病變三大類型,其最後的結果皆會因血流灌注不足進而造成足部組織壞死甚至截肢,再加上病人常因足部產生潰瘍,傷口不易癒合才就診,此時足部通常已經產生不同程度的血循病變。若能早期偵測血流灌注的變化,就能提早治療,進一步預防潰瘍的發生;另外,有別於其他量測的血流方法,生物電阻抗技術在量測血流方面應用廣泛,可以提供有用資訊,以便作為疾病預防及診斷之參考,也提供了更加簡單、快速和便利的量測方式,不再受限於場合。本研究目的在於 1、研製一套具有無線傳輸的電阻抗量測系統和2、設計鞋墊形的多電極。本研究中,此系統硬體設計包括四個部分為阻抗量測、電極設計、通道切換裝置與無線傳輸。系統軟體功能主要分為三個部分,有無線傳輸,數據擷取和阻抗值校正。本系統阻抗測量訊號的總諧波失真為0.403%,最大誤差為於3.51%,同時具有模組化電路設計以方便整合與擴充和容易操作之電腦圖形控制介面的特點。再者電極的設計,使用海綿加上食鹽水測試,其標準差小於0.921。結果顯示系統具有可行性和很好的再現性。
英文摘要 Diabetic foot caused by neuropathy, vascular lesions or neurovascular lesions is the most common chronic complication. With the rapid increase in the population of diabetes, Diabetic foot is a serious problem. All lesions will eventually cause tissue necrosis or amputation due to poor perfusion. Because of feeling missing, the occurrence of ulcers usually accompanies different degrees of lesions. So, if patients can early detect the variation of perfusion, they will prevent the occurrence of ulcers. In contrast to traditional methods, bioimpedance provides a simple, fast and convenient way to measure and doesn’t limit by place. It also provides valuable information for disease prevention and diagnosis. In this study, the hardware design includes impedance measurement, wireless transmission, electrode design, and channel selection circuitry. The software design contains wireless transmission, data acquisition and impedance calibration. The total harmonic distortion of bioimpedance measuring circuit of the proposed system is 0.403% and the maximal error is 3.51%. In addition, the proposed system also has the module circuitry design for convenience of integration and graphical user interface for ease of use. In electrode design, we add normal saline into foam rubber to measure. The standard deviation is below 0.921. From the experimental results, the developed system has feasibility and good reproducibility.
論文目次 中文摘要 I
ABSTRACT II
致謝 III
List of Tables VII
List of Figures VIII

Chapter 1 Introduction 1
1.1 Diabetes Foot 1
1.1.1 Epidemiology of Diabetes Foot 1
1.1.2 Causes of Diabetes Foot 2
1.2 Methods Used to Measure Blood Flow 3
1.2.1 Bioimpedance 3
1.2.2 Doppler Ultrasound 4
1.2.3 Laser Doppler 5
1.2.4 Photoplethysmography (PPG) 6
1.3 Bioimpedance 7
1.3.1 Electrical Properties of Biological Tissue 8
1.3.2 Electrical Impedance 9
1.3.3 Blood Flow Impedance Characterization 10
1.3.4 Literature Review 13
1.4 Motivation and Purpose 14

Chapter 2 Materials and Methods 16
2.1 Research Overview 16
2.2 Hardware Design 16
2.2.1 MCU 17
2.2.2 Impedance Measurement Circuit 19
2.2.3 Electrode Design and Position 25
2.2.4 Multiplexer (MUX) 25
2.2.5 Wireless Transmission 27
2.2.6 Power Supply 28
2.3 Software Design 29
2.3.1 Graphic User Interface (GUI) 29
2.3.2 System Control Program 31
2.4 Calibration 32

Chapter 3 Results 34
3.1 Wireless multi-electrode bioimpedance system 34
3.2 The evaluation of Developed System 36
3.2.1 Total Harmonic Distortion 36
3.2.2 Output Impedance 38
3.2.3 Current Stability 39
3.2.4 The Measurement Error Test 39
3.2.5 The Reproducibility of Measurement 40
3.2.6 The measurement of saline 41

Chapter 4 Discussions 43
4.1 The evaluation of Developed System 43
4.1.1 Total Harmonic Distortion (THD) 43
4.1.2 Current Stability 43
4.1.3 The Measurement Error 44
4.1.4 The Reproducibility of Measurement 45
4.1.5 The measurement of saline 45

Chapter 5 Conclusions and Prospects 46

References 47

參考文獻 [1]R. G. Frykberg et al., “Diabetic Foot Disorders: A Clinical Practice Guideline (2006 Revision),” J. Foot Ankle Surg., vol. 45, no. 5, Supplement, pp. S1–S66, Sep. 2006.
[2]L. Guariguata, D. R. Whiting, I. Hambleton, J. Beagley, U. Linnenkamp, and J. E. Shaw, “Global estimates of diabetes prevalence for 2013 and projections for 2035,” Diabetes Res. Clin. Pract., vol. 103, no. 2, pp. 137–149, Feb. 2014.
[3]F. Aguiree et al., IDF Diabetes Atlas : sixth edition. International Diabetes Federation, 2013.
[4]Singh N, Armstrong DG, and Lipsky BA, “PReventing foot ulcers in patients with diabetes,” JAMA, vol. 293, no. 2, pp. 217–228, Jan. 2005.
[5]A. J. M. Boulton, “The diabetic foot,” Medicine (Baltimore), vol. 38, no. 12, pp. 644–648, Dec. 2010.
[6]K. P and urengan, “Diabetic foot: vasculopathy assessment and analysis of risk factors of amputation,” Int J Res Med Sci, vol. 3, no. 1, pp. 70–76, 2015.
[7]J. S. Petrofsky, “Resting Blood Flow in the Skin: Does it Exist, and What is the Influence of Temperature, Aging, and Diabetes?,” J. Diabetes Sci. Technol., vol. 6, no. 3, pp. 674–685, May 2012.
[8]A. K. Jayanthy, N. Sujatha, and M. R. Reddy, Measuring Blood Flow: Techniques and Applications- a Review. 2011.
[9]C. Y. L. Chao and G. L. Y. Cheing, “Microvascular dysfunction in diabetic foot disease and ulceration,” Diabetes Metab. Res. Rev., vol. 25, no. 7, pp. 604–614, Oct. 2009.
[10]C. Nugent, P. J. McCullagh, and E. T. McAdams, Personalised Health Management Systems: The Integration of Innovative Sensing, Textile, Information and Communication Technologies. IOS Press, 2005.
[11]Y. Yang and J. Wang, “New Tetrapolar Method for Complex Bioimpedance Measurement: Theoretical Analysis and Circuit Realization,” in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2005, pp. 6605–6607.
[12]J. Webster, Medical Instrumentation: Application And Design, 3Rd Ed. Wiley India Pvt. Limited, 2009.
[13]S. Bergstrand, Tissue Blood Flow Responses to External Pressure Using LDF and PPG [Elektronisk resurs] : Testing a System Developed for Pressure Ulcer Research. Linköping: Linköping University Electronic Press, 2009.
[14]J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas., vol. 28, no. 3, p. R1, 2007.
[15]T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, “Wearable Photoplethysmographic Sensors—Past and Present,” Electronics, vol. 3, no. 2, pp. 282–302, Apr. 2014.
[16]D. S. Holder, Electrical Impedance Tomography: Methods, History and Applications. CRC Press, 2004.
[17]O. G. Martinsen and S. Grimnes, Bioimpedance and Bioelectricity Basics. Academic Press, 2011.
[18]M. Ruiz and J. Carlos, Sensor-Based Garments that Enable the Use of Bioimpedance Technology: Towards Personalized Healthcare Monitoring. echnology and Health, KTH Royal Institute of Technology, 2013.
[19]A. Yufera, A. Rueda, J. M. Munoz, R. Doldan, G. Leger, and E. O. Rodriguez-Villegas, “A tissue impedance measurement chip for myocardial ischemia detection,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 52, no. 12, pp. 2620–2628, Dec. 2005.
[20]J. G. Webster, The Measurement, Instrumentation, and Sensors: Handbook. Springer Science & Business Media, 1999.
[21]T. Dai and A. Adler, “Blood Impedance Characterization from Pulsatile Measurements,” in Canadian Conference on Electrical and Computer Engineering, 2006. CCECE ’06, 2006, pp. 983–986.
[22]T. Dai and A. Adler, “In Vivo Blood Characterization From Bioimpedance Spectroscopy of Blood Pooling,” IEEE Trans. Instrum. Meas., vol. 58, no. 11, pp. 3831–3838, Nov. 2009.
[23]M. C. Cho, J. Y. Kim, and S. Cho, “A bio-impedance measurement system for portable monitoring of heart rate and pulse wave velocity using small body area,” in IEEE International Symposium on Circuits and Systems, 2009. ISCAS 2009, 2009, pp. 3106–3109.
[24]C. Corciova, R. Ciorap, R. Matei, and A. Salceanu, “Peripheral Vascular Measurement Using Electrical Impedance Plethysmography,” in International Conference on Advancements of Medicine and Health Care through Technology, S. Vlad and R. V. Ciupa, Eds. Springer Berlin Heidelberg, 2011, pp. 136–139.
[25]C. Corciova, R. Ciorap, D. Matei, and A. Salceanu, “Design an Impedance Plethysmography System for Measuring Limb Blood Flow,” in 5th European Conference of the International Federation for Medical and Biological Engineering, Á. Jobbágy, Ed. Springer Berlin Heidelberg, 2011, pp. 157–160.
[26]C. Corciovă, M. Turnea, and A. Sălceanu, “A measurement system for the blood flow in peripheral territory,” in E-Health and Bioengineering Conference (EHB), 2011, 2011, pp. 1–4.
[27]E. Irzmańska, G. Padula, and R. Irzmański, “Impedance plethysmography as a tool for assessing exertion-related blood flow changes in the lower limbs in healthy subjects,” Measurement, vol. 47, pp. 110–115, Jan. 2014.
[28]P. Bertemes-Filho, A. Felipe, and V. C. Vincence, “High Accurate Howland Current Source: Output Constraints Analysis,” Circuits Syst., vol. 04, no. 07, p. 451, Nov. 2013.
[29]C. S. Koukourlis, V. K. Trigonidis, and J. N. Sahalos, “Differential synchronous demodulation for small signal amplitude estimation,” IEEE Trans. Instrum. Meas., vol. 42, no. 5, pp. 926–931, Oct. 1993.
[30]K. Le, “High performance wireless bio-impedance measurement system,” Thesis, 2014.
[31]J. A. Castro, A. Olmo, P. Pérez, and A. Yúfera, “Microcontroller-Based Sinusoidal Voltage Generation for Electrical Bio-Impedance Spectroscopy Applications,” J. Comput. Commun., vol. 04, no. 17, p. 51, Dec. 2016.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw