進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1108202016370700
論文名稱(中文) 高濃度電子層應用於表面電漿子之研究
論文名稱(英文) Applications of High Electron Density Layer in Plasmonics
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 108
學期 2
出版年 109
研究生(中文) 李俊昱
研究生(英文) Chun-Yu Li
電子信箱 charles1177321@gmail.com
學號 L76071346
學位類別 碩士
語文別 中文
論文頁數 93頁
口試委員 指導教授-藍永強
共同指導教授-張允崇
口試委員-張世慧
中文關鍵字 表面電漿共振  高電子遷移率電晶體感測器  奈米球鏡微影術 
英文關鍵字 Surface plasmon resonance  High electron mobility transistor  Nanospherical-lens lithography 
學科別分類
中文摘要 本學位論文主要闡述高濃度電子層於表面電漿領域之研究,在實驗中包含以有限元素分析法(Finite element method)為模擬方法,以及製程與量測,並以數值模擬方法對實驗作預期與規劃。
  首先我們利用絕緣層-透明導電薄膜接面形成之高濃度電荷累積層作為激發表面電漿子模擬,在模擬中以帕松方程式(Poisson’s equation)為模型推導出發點,推導出在電荷累積層中電子濃度分佈與電位分佈,並以隨位置變化之電子濃度分佈改寫德魯模型(Drude model)。模擬激發方法利用側向入射耦合法(End-fire coupling)激發表面電漿子,另外以不同表面電位探討電漿子波數的變化以及侷限效果,此模擬成功演示了具可調變性的表面電漿子元件。
  實驗另一部份為高電子遷移率電晶體作為感測器應用,藉以元件表面態改變進而影響高濃度電子層通道與其高反應速率的優點,作為侷域性表面電漿中熱載子(Hot electron)的感測。我們以奈米球鏡微影術於元件感測區中製作橢圓長軸光譜響應峰值位於980 nm之奈米結構,以具單一偏振之980 nm雷射照射樣品,由鎖向放大器量測電流變化,得到電流差值是和侷域性表面電漿共振有關,且透過其他對照實驗量測,建立了以電元件感測熱載子的模型。
英文摘要 We have discussed the application of high electron density layer in plasmonics in this thesis, including the nanofabrication, and using the finite element analysis method to expect the result of experiment.
In first part of the thesis, we use the accumulation layer which is created at the interface between insulator and transparent conductive oxide to excite surface plasmon polaritons, following the standard analysis of a MOS structure, we derive the electron density and surface potential in accumulation layer within the ITO material, and describe the optical characteristics of ITO with and within accumulation layer by Drude model, we successfully excite surface plasmon polaritons by end-fired coupling, and make the surface plasmon polaritons be confined in the area we apply voltage, and we demonstrate wave vector exchange by different bias, in conclusion, the tunable plasmon device has been present.
In second part of the thesis, we use the AlGaN/GaN HEMT which is applied to sensing application, the gateless structure is used in the study, due to surface state changed by charge, the sheet electron concentration of 2DEG being changed in order to maintain the charge neutrality, this is the reason why use it to be the sensor, we fabricate the nanoellipse arrays by nanospherical-lens lithography at the sensing region which LSPR response is at 980 nm, and we illuminate the 980 nm laser to find out variety of current, as well as monitor the temperature in experiment. Finally, we demonstrate the model of hot carrier which is created by LSPR effect, and how it inject to the device, as well as explain why does the current rise when 980 nm laser is illuminating.
論文目次 口試合格證明 II
中文摘要 III
致謝 XVIII
表目錄 XXII
圖目錄 XXIII
第一章 序論 1
1.1 文獻回顧 1
1.1-1 奈米結構的表面電漿共振 1
1.1-2 AlGaN/GaN高電子遷移率場效電晶體與感測器之研究 1
1.1-3 奈米球鏡微影術 2
1.2 研究動機與論文架構 2
第二章 研究背景與製程方法 4
2.1 AlGaN/GaN高電子遷移率場效電晶體 4
2.1-1 高電子遷移率場效電晶體簡介 4
2.1-2 二維電子氣(2DEG) 5
2.1-3 金屬-半導體接面 9
2.1-4 AlGaN/GaN HEMT於感測應用之機制 13
2.2 金屬表面電漿 15
2.2-1 表面電漿子概述 15
2.2-2 金屬Drude model 17
2.2-3 金屬-絕緣層界面之表面電漿子 20
2.2-4 表面電漿子激發方法 27
2.2-5 侷域性表面電漿 30
2.3 奈米球自組裝現象與製程應用 34
2.3-1 奈米球自組裝排列機制 34
2.3-2 奈米球於製程應用 36
2.4 製程儀器 38
2.4-1 奈米球自組裝架構 38
2.4-2 手持式紫外燈 39
2.4-3 高真空蒸鍍系統 40
2.4-4 電漿蝕刻系統 41
2.5 量測儀器 42
2.5-1 場發射掃描式電子顯微鏡 42
2.5-2 分光光譜儀 43
2.5-3 電性量測系統 44
2.5-4 鎖向放大器 45
2.6 模擬方法-有限元素分析法FEM 46
2.6-1 有限元素分析法基本概念 46
2.6-2 有限元素分析法的運算過程 47
2.6-3 有限元素分析法軟體-COMSOL 50
2.7 AlGaN/GaN HEMT 感測元件與奈米橢圓結構製程 51
2.7-1 元件源極-汲極歐姆接觸 51
2.7-2 金橢圓陣列結構製程 53
2.7-3 HEMT感測區結構製程 56
第三章 透明導電氧化物之電荷累積層表面電漿模擬 58
3.1 模擬模型 58
3.2 以側向入射激發表面電漿 61
3.3 透過偏壓改變表面電漿波數 63
第四章 AlGaN/GaN高電子電晶體於感測器之應用 67
4.1 元件直流電性量測與分析 67
4.1-1 接觸電阻量測 67
4.1-2 四點探針法與霍爾量測 69
4.2 金橢圓陣列結構之光學特性 72
4.2-1 金橢圓陣列結構模擬 72
4.2-2 金橢圓陣列結構的光譜響應 75
4.3 元件感測實驗 78
4.3-1 光效應實驗 78
4.3-2 元件變溫特性量測 81
4.3-3 熱載子效應量測 83
第五章 結論與未來展望 89
5.1 結論 89
5.2 未來展望 90
參考文獻 91
參考文獻 1. Krishnan, A., et al., Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells. Opt Express, 2014. 22 Suppl 3: p. A800-11.
2. Jensen, T.R., et al., Nanosphere Lithography:  Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. The Journal of Physical Chemistry B, 2000. 104(45): p. 10549-10556.
3. Ashino, M. and M. Ohtsu, Fabrication and evaluation of a localized plasmon resonance probe for near-field optical microscopy/spectroscopy. Applied Physics Letters, 1998. 72(11): p. 1299-1301.
4. Matsubara, K., S. Kawata, and S. Minami, Optical chemical sensor based on surface plasmon measurement. Applied Optics, 1988. 27(6): p. 1160-1163.
5. Cheng, B.H., et al., Optical Hybrid-Superlens Hyperlens for Superresolution Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2013. 19(3): p. 4601305-4601305.
6. Kang, B.S., et al., Electrical detection of immobilized proteins with ungated AlGaN∕GaN high-electron-mobility Transistors. Applied Physics Letters, 2005. 87(2).
7. Jia, X., et al., Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer. Sci Rep, 2016. 6: p. 27728.
8. Chung, G.H., T.A. Vuong, and H. Kim, Demonstration of hydrogen sensing operation of AlGaN/GaN HEMT gas sensors in extreme environment. Results in Physics, 2019. 12: p. 83-84.
9. Thapa, R., et al., Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection. Applied Physics Letters, 2012. 100(23).
10. Bukasov, R. and J.S. Shumaker-Parry, Highly Tunable Infrared Extinction Properties of Gold Nanocrescents. Nano Letters, 2007. 7(5): p. 1113-1118.
11. Rodríguez-Fortuño, F.J., et al., Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Applied Physics Letters, 2011. 98(13).
12. Colson, P., C. Henrist, and R. Cloots, Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials. Journal of Nanomaterials, 2013. 2013: p. 1-19.
13. Chang, Y.C., et al., High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography. Sci Rep, 2013. 3: p. 3339.
14. Haynes, C.L. and R.P. Van Duyne, Nanosphere Lithography:  A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. The Journal of Physical Chemistry B, 2001. 105(24): p. 5599-5611.
15. Semiconductor.Devices_Physics.Technology_Sze.2ndEd_Wiley_2002
16. 黃智方, 張庭輔, "氮化鎵功率元件簡介", 電子資訊, 20卷, 1期, pp. 30-40, 2014
17. Ambacher, O., et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. Journal of Applied Physics, 1999. 85(6): p. 3222-3233.
18. Kang, B., et al., Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors. Sensors, 2006. 6.
19. Roccaforte, F., et al., An Overview of Normally-Off GaN-Based High Electron Mobility Transistors. Materials (Basel), 2019. 12(10).
20. Ibbetson, J.P., et al., Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Applied Physics Letters, 2000. 77(2): p. 250-252.
21. Greco, G., F. Iucolano, and F. Roccaforte, Ohmic contacts to Gallium Nitride materials. Applied Surface Science, 2016. 383: p. 324-345.
22. Schroder_Semiconductor Material & Device Characterization.
23. Dharmarasu, N., et al., Demonstration of AlGaN/GaN High-Electron-Mobility Transistors on 100-mm-Diameter Si(111) by Ammonia Molecular Beam Epitaxy. Applied Physics Express, 2012. 5(9).
24. 邱國斌, 蔡定平, “金屬表面電漿簡介”, 物理雙月刊, 28卷, 2期, pp.472-482, 2006.
25. Atwater, H., The Promise of Plasmonics. Scientific American, 2007. 296: p. 56-63.
26. Stefan A. Maier, “Plasmonics: Fundamentals and Applications”, Springer US, 2007.
27. Maas, R., et al., Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nature Photonics, 2013. 7(11): p. 907-912.
28. Jackson, J.D., Classical electrodynamics. 1999: Wiley.
29. Pelton, M., J. Aizpurua, and G. Bryant, Metal‐nanoparticle plasmonics. Laser & Photonics Review, 2008. 2(3): p. 136-159.
30. Denkov, N., et al., Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir, 1992. 8(12): p. 3183-3190.
31. Ormonde, A.D., et al., Nanosphere Lithography:  Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV−Visible Extinction Spectroscopy. Langmuir, 2004. 20(16): p. 6927-6931.
32. 張允崇“應用奈米球微影術及奈米球鏡微影術製作表面電漿子奈米結構”, 台灣奈米會刊, 31卷, 2期, pp. 26-32, 2012.
33. Chang, Y.-C., et al., A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor. Nanotechnology, 2013. 24(9): p. 095302.
34. 甘娥忠 and 于亚婷, 有限元法/: 原理、建模及应用. 2004: 国防工业出版社.
35. COMSOL Multiphysics工程实践与理论仿真: 多物理场数值分析技术. 2012: 电子工业出版社.
36. Naik, G.V., V.M. Shalaev, and A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv Mater, 2013. 25(24): p. 3264-94.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw