進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1108202012543000
論文名稱(中文) 半量子啟發式之輕量化量子金鑰分配協定:非對稱式量子金鑰分配與認證式量子金鑰分配協定
論文名稱(英文) Semi-quantum inspired lightweight quantum key distribution protocols: asymmetric quantum key distribution and authenticated quantum key distribution
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 陳柏宇
研究生(英文) Po-Yu Chen
學號 P76061247
學位類別 碩士
語文別 英文
論文頁數 35頁
口試委員 指導教授-黃宗立
口試委員-蔡家緯
口試委員-李南逸
口試委員-王智弘
中文關鍵字 量子密碼學  量子金鑰分配  認證式  輕量化  半誠實  第三方 
英文關鍵字 Quantum Cryptography  Asymmetric  Quantum Key Distribution  Third Party  Semi-honest 
學科別分類
中文摘要 本論文設計了兩種量子金鑰分配協定,分別為三方之非對稱輕量化量子金鑰分配、以及三方之非對稱認證式輕量化量子金鑰分配。首先我們以現有的半量子啟發式之三方非對稱量子金鑰分配為基礎,設計出比現有架構下使用者負擔更低且效率更好的協定,讓兩個輕量化量子使用者能夠在一個不被信任之第三方的幫助下成功分享金鑰。隨後我們結將認證式環境結合了輕量化量子能力進而設計出了半量子啟發式之輕量化三方認證式量子金鑰分配,以預共享之金鑰來取代傳統認證通道,並且於協定成功之時也能回收預共享金鑰進而減少通訊所損耗之負擔,此協定不但具有認證式協定之預共享金鑰能夠回收的特點,並且也能夠降低使用者負擔,讓協定更具可行性。
英文摘要 In this thesis, two quantum key distribution protocols are designed, namely Semi-Quantum Inspired Lightweight Mediated Asymmetric Quantum Key Distribution (SQIL-MAQKD), and Semi-Quantum Inspired Lightweight Mediated Authenticated Asymmetric Quantum Key Distribution (SQIL-MAAQKD). First, a protocol with a lower burden and better efficiency than the existing SQIL-MAQKD is designed. The proposed SQIL-MAQKD protocol allows two lightweight quantum participants with asymmetric quantum capabilities to share a secret key with the help of an untrusted third party (TP). Then we combine the authenticated environment with lightweight quantum capabilities to design a semi-quantum inspired lightweight mediated authenticated asymmetric quantum key distribution (SQIL-MAAQKD) protocol using pre-shared keys to replace the authenticated classical channel (ACC), which also allows one to recycle the pre-shared key with successful execution of the protocol. The purpose of this thesis is to design secure and efficient quantum protocols for practical implementation. The proposed protocols have been shown to be robust under collective attacks.
論文目次 中文摘要 I
ABSTRACT II
誌 謝 III
CONTENT IV
LIST OF TABLE V
LIST OF FIGURES VI
CHAPTER 1 INTRODUCTION 1
1.1 OVERVIEW 1
1.2 MOTIVATION AND CONTRIBUTION 3
1.3 THESIS STRUCTURE 5
CHAPTER 2 PRELIMINARIES 6
2.1 PROPERTIES OF SINGLE PHOTONS 6
2.2 UNITARY OPERATORS 7
CHAPTER 3 SEMI-QUANTUM INSPIRED LIGHTWEIGHT MEDIATED ASYMMETRIC QUANTUM KEY DISTRIBUTION 9
3.1 PROPOSED SQIL-MAQKD PROTOCOL 9
3.2 SECURITY ANALYSIS 12
3.3 COMPARISON 14
CHAPTER 4 SEMI-QUANTUM INSPIRED LIGHTWEIGHT MEDIATED AUTHENTICATED ASYMMETRIC QUANTUM KEY DISTRIBUTION 17
4.1 PROPOSED SQIL-MAAQKD PROTOCOL 17
4.2 SECURITY ANALYSIS 20
4.3 COMPARISON 28
CHAPTER 5 CONCLUSIONS 30
Bibliography 31
參考文獻 [1] C. Bennett and G. Brassard, WITHDRAWN: Quantum cryptography: Public key distribution and coin tossing. 1984, pp. 175-179.
[2] T. Hwang, C. C. Hwang, and C. W. Tsai, "Quantum key distribution protocol using dense coding of three-qubit W state," The European Physical Journal D, vol. 61, no. 3, pp. 785-790, 2011/02/01 2011.
[3] H.-K. Lo, X. Ma, and K. Chen, "Decoy State Quantum Key Distribution," Physical Review Letters, vol. 94, no. 23, p. 230504, 06/16/ 2005.
[4] X.-H. Li, F.-G. Deng, and H.-Y. Zhou, "Efficient quantum key distribution over a collective noise channel," Physical Review A, vol. 78, no. 2, p. 022321, 08/13/ 2008.
[5] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using gaussian-modulated coherent states," Nature, vol. 421, no. 6920, pp. 238-241, 2003/01/01 2003.
[6] G. L. Long and X. S. Liu, "Theoretically efficient high-capacity quantum-key-distribution scheme," Physical Review A, vol. 65, no. 3, p. 032302, 02/01/ 2002.
[7] Boyer, M., Kenigsberg, D., Mor, T.: Quantum Key Distribution with Classical Bob. Phys. Rev. Lett. 99, 140501 (2007)
[8] Boyer, M., Kenigsberg, D., Mor, T.: Quantum Key Distribution with Classical Bob. First Int. Conf. Quantum, Nano, Micro Technol. (2007)
[9] Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79, 032341 (2009)
[10] Zou, X.F., Qiu, D.W., Li, L.Z., Wu, L.H., Li, L.J.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79, 052312 (2009)
[11] Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum Key Distribution Using Entangled States. Chin. Phys. Lett. 28(10), 100301 (2011)
[12] Nie Y.Y, Li, Y.H., Wang, Z.S.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12(1), 437-448 (2013)
[13] Zou, X., Qiu, D., Zhang, S., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14, 2981-2996 (2015)
[14] Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82, 022303 (2010)
[15] Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(5), 1250050 (2012)
[16] Yang, C.W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(5), 1350052 (2012)
[17] Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947-958 (2016)
[18] Xie, C., Li, L., Situ, H., He, J.: Semi-quantum secure direct communication scheme based on bell states. Int. J. Theor. Phys. 57(6), 1881-1887 (2018)
[19] Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 295 (2017)
[20] Hwang, T., Chen, Y. J., Tsai, C. W., & Kuo, C. C. (2020). Semi-quantum Inspired Lightweight Mediated Quantum Key Distribution Protocol. arXiv preprint arXiv:2007.05804..
[21] Yang,Y,F Hwang, T. "Asymmetric semi-quantum security protocols: Semi-quantum key distribution and Semi-quantum secret sharing" master's thesis, NCKU CSIE ,2019..
[22] V.Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, "The security of practical quantum key distribution," Reviews of Modern Physics, vol. 81, no. 3, pp. 1301-1350, 09/29/ 2009.
[23] W. O. Krawec, "Mediated semiquantum key distribution," Physical Review A, vol. 91, no. 3, p. 032323, 03/25/ 2015.
[24] Bennett, C.H., Brassard, G., Breidbart, S.: Quantum cryptography II: How to re-use a one-time pad safely even if P= NP. Natural computing 13, 453-458 (2014)
[25] G. Zeng and W. Zhang, “Identity Verification in Quantum Key Distribution,“ Physical Rev. A, vol. 61, 2000.
[26] Nagy, N., Akl, S.G.: Authenticated quantum key distribution without classicalcommunication. Parallel Processing Letters, Special Issue on Unconventional Computational Problems 17(3), 323–335 (September 2007).
[27] T. Hwang, K.-C. Lee and C.-M. Li, "Provably secure three-party authenticated quantum key distribution protocols", IEEE Trans. Dependable Secure Comput., vol. 4, no. 1, pp. 71-80, Jan.Mar. 2007.
[28] Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014).
[29] C. Li, K.-F. Yu, S. Kao, T. Hwang.: Authenticated semi-quantum key distributions without classical channel Quantum Inf. Process. 2016, 15,2881.
[30] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, "The security of practical quantum key distribution," Reviews of Modern Physics, vol. 81, no. 3, pp. 1301-1350, 09/29/ 2009.
[31] Biham, Boyer, Brassard, G. van de, and Mor, "Security of Quantum Key Distribution against All Collective Attacks," Algorithmica, vol. 34, no. 4, pp. 372-388, 2002/11/01 2002.
[32] K.-F. Yu, C.-W. Yang, C.-H. Liao, and T. Hwang, "Authenticated semi-quantum key distribution protocol using Bell states," Quantum Information Processing, vol. 13, no. 6, pp. 1457-1465, 2014/06/01 2014.
[33] W. O. Krawec, "Mediated semiquantum key distribution," Physical Review A, vol. 91, no. 3, p. 032323, 03/25/ 2015.
[34] C.-M. Li, K.-F. Yu, S.-H. Kao, and T. Hwang, "Authenticated semi-quantum key distributions without classical channel," Quantum Information Processing, vol. 15, no. 7, pp. 2881-2893, 2016/07/01 2016.
[35] Z.-R. Liu and T. Hwang, "Mediated Semi-Quantum Key Distribution Without Invoking Quantum Measurement," Annalen der Physik, vol. 530, no. 4, p. 1700206, 2018/04/01 2018.
[36] L. Yan, Y. Sun, Y. Chang, S. Zhang, G. Wan, and Z. Sheng, "Semi-quantum protocol for deterministic secure quantum communication using Bell states," Quantum Information Processing, vol. 17, no. 11, p. 315, 2018/10/10 2018.
[37] C. Shukla, K. Thapliyal, and A. Pathak, "Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue," Quantum Information Processing, vol. 16, no. 12, p. 295, 2017/10/26 2017.
[38] Y. Sun, L. Yan, Y. Chang, S. Zhang, T. Shao, and Y. Zhang, "Two semi-quantum secure direct communication protocols based on Bell states," Modern Physics Letters A, vol. 34, no. 01, p. 1950004, 2019/01/10 2018.
[39] L. Liu, M. Xiao, and X. Song, "Authenticated semiquantum dialogue with secure delegated quantum computation over a collective noise channel," Quantum Information Processing, vol. 17, no. 12, p. 342, 2018/11/03 2018.
[40] T.-Y. Ye and C.-Q. Ye, "Semi-quantum Dialogue Based on Single Photons," International Journal of Theoretical Physics, vol. 57, no. 5, pp. 1440-1454, 2018/05/01 2018.
[41] C.-Q. Ye and T.-Y. Ye, Circular Semi-Quantum Secret Sharing Using Single Particles. 2018, p. 661.
[42] J. Wang, S. Zhang, Q. Zhang, and C.-J. Tang, "SEMIQUANTUM SECRET SHARING USING TWO-PARTICLE ENTANGLED STATE," International Journal of Quantum Information, vol. 10, no. 05, p. 1250050, 2012/08/01 2012.
[43] K.-F. Yu, J. Gu, T. Hwang, and P. Gope, "Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing," Quantum Information Processing, vol. 16, no. 8, p. 194, 2017/07/01 2017.
[44] Y.-G. Yang, B.-R. Li, S.-Y. Kang, X.-B. Chen, Y.-H. Zhou, and W.-M. Shi, "New quantum key agreement protocols based on cluster states," Quantum Information Processing, vol. 18, no. 3, p. 77, 2019/02/02 2019.
[45] K. Wei, X. Yang, C. Zhu, and Z.-Q. Yin, "Quantum secret sharing without monitoring signal disturbance," Quantum Information Processing, vol. 17, no. 9, p. 230, 2018/07/27 2018
[46] Kuo,C,C Hwang, T. " Semi-Quantum inspired lightweight quantum key distribution protocols using single photons" master's thesis, NCKU CSIE ,2020.
[47] M. Boyer, R. Gelles, D. Kenigsberg, and T. Mor, "Semiquantum key distribution," Physical Review A, vol. 79, no. 3, p. 032341, 03/30/ 2009.
[48] X. Zou, D. Qiu, L. Li, L. Wu, and L. Li, "Semiquantum-key distribution using less than four quantum states," Physical Review A, vol. 79, no. 5, p. 052312, 05/12/ 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-06-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-06-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw