進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1108201922183700
論文名稱(中文) 利用微流體裝置以氧化石墨烯螢光共振能量轉移( FRET )適體傳感器檢測汞二價離子
論文名稱(英文) A New Microfluidic Device for Mercury (II) Ion Detection Based on Graphene Oxide for Aptasensor in FRET
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 107
學期 2
出版年 108
研究生(中文) 曾宇萍
研究生(英文) Yu-Ping Tseng
學號 N96064387
學位類別 碩士
語文別 中文
論文頁數 70頁
口試委員 指導教授-楊瑞珍
口試委員-楊鏡堂
口試委員-楊煥成
口試委員-張建成
口試委員-張志彰
中文關鍵字 微流道  Hg2+  適體傳感器  氧化石墨烯  螢光能量共振轉移 
英文關鍵字 microchannel  Hg2+ ions  Aptamer sensor  Graphene Oxide and FRET 
學科別分類
中文摘要 重金屬會透過人為引起的活動排放至環境中,導致環境受到汙染和對生物有一定的威脅性,一旦重金屬被釋放出來後,不論是沖入海中或是堆積在含水層中,當經過生物與生物之間有機物的結合,就會形成所謂的生物毒性化合物,因此生物界中的食物鏈間接會對人類的心血管、血液、肺部、消化系統、腎臟系統、免疫系統、神經系統、內分泌系統、生殖系統和胎兒造成相關疾病。
現今已有許多運用微流道具有少量樣品和並快速分析的特性,結合二維材料,進行各種不同目標物的檢測並應用在生醫領域上,過去有使用CVD將石墨烯與氧化石墨烯負載在二氧化矽上,再將PDMS微流道放置於適體傳感器上,抓取目標物PSA,但此方法成本高,且品質不固定,重複檢測出來的結果可能會有誤差。
本實驗使用適體( Aptamer )的螢光標記物( FAM )並以氧化石墨烯( GO )為基材的螢光生物傳感器來檢測Hg 2+離子,其原理是當沒有Hg 2+離子的情形下,帶有螢光標記物的適體會因為吸附在氧化石墨烯的表面上,使螢光會淬滅掉,而當有Hg 2+離子下,適體會因為自身的雜交作用抓取Hg 2+離子,進而恢復螢光,並結合PDMS微流道,加快反應提升混合效果,本研究指出結合微流道後得檢測範圍為汞離子濃度從2 nM到100 nM ( R2=0.98114 ),依照國際世界衛生組織( WHO )規定在飲用水中最大容許的汞離子為6 ppb,將實驗最低檢測極限值( LOD )為2 nM值換算約等於0.39 ppb,由上述結果可得知,本研究所設計的裝置檢測出來的極限值都明顯比規定還要低。
英文摘要 Heavy metals emitted into the environment through human activities, causes environmental pollution and threats to living things. Once the heavy metal is released, whether it is eroded into the sea or accumulated in the aquifer, it may interact with the organic matter between the organism, Therefore, many human diseases for example cardiovascular, blood, lung, digestive system, kidney system, immune system, nervous system, endocrine system, reproductive system and fetus may be due to suffering from the toxic heavy metals in our environment.
In this study, we design a microfluidic device to detect the concentration of Hg2+ in liquids. The microchannel is fabricated by using Polydimethylsiloxane, which can accelerate the reaction and enhance the mixing efficiency. We use Aptamer together with graphene oxide mixed inside the microchannels, when in the presence of Hg2+, thymine selectively combined with Hg2+ to form T–Hg2+–T complex. This could get rid of the adsorption of Aptamer by graphene oxide, and thus can recovered the fluorescence.
This study indicates the detection range is from 2 nM to 100 nM in microchannel (R2=0.98114), and according to the International World Health Organization (WHO), the maximum allowable mercury ion is 6 ppb in drinking water, and the minimum detection of limit (LOD) is 2 nM, which is equivalent to 0.39 ppb. From the result, the detection of limit is obvious lower than the regulations.
論文目次 AbstractI
中文摘要II
SUMMARYIII
1.INTRODUCTIONIV
2. MATERIALS AND METHODSIV
2.1 Materials and reagentsIV
2.2 LithographyV
2.3 InstrumentsV
3. RESULTS AND DISCUSSIONVI
3.1 Design microchannel deviceVI
3.2 Quenching effect of graphene oxideVI
3.3 Detection limit of mercury ions in microchannelVIII
4. CONCLUSIONIX
致謝X
目錄XI
圖目錄XV
表目錄XIX
縮寫表XX
第一章 緒論1
1.1 研究動機1
1.1.1微流體芯片之發展1
1.1.2微流道於生醫領域之發展2
1.1.2汞的簡介3
1.1.3汞對於環境之汙染4
1.1.4 汞對於人類之疾病5
1.2 研究架構6
第二章 文獻討論7
2.1 石墨烯和其衍生物之介紹7
2.1.1石墨烯7
2.1.2石墨衍生物-氧化石墨烯8
2.2 微流道9
2.2.1微混合器之介紹9
2.3 螢光共振能量轉移原理11
2.4 適體之介紹14
2.4.1適體的特性14
2.4.2適體傳感器16
第三章 實驗材料與方法23
3.1 化學品23
3.2 微流道設計與數值模擬24
3.2.1微流道之結構24
3.2.2 Dead Zone模擬25
3.2.3 微流道系統裝置26
3.3 黃光製程27
3.3.1 SU-8 厚膜光阻27
3.3.2 製程步驟29
3.4 儀器設備33
3.4.1 旋轉塗佈儀33
3.4.2 雙面對準/UV光感奈米壓印機34
3.4.3 氧電漿機35
3.4.4 加熱板35
3.4.5 表面粗度儀36
3.4.6 試管震盪器37
3.4.7 酸鹼度計38
3.4.8 倒立式螢光顯微鏡39
3.4.9 掃描式雷射共軛焦顯微鏡40
3.4.10 超音波震盪器41
3.4.11 Image J42
3.4.12 Zeiss ZEN42
3.4.13 注射幫浦43
3.5 溶液配置44
3.5.1 緩衝溶液44
3.5.2 乙二胺緩衝溶液44
3.5.3 適體溶液44
3.5.4 氧化石墨烯懸浮液45
3.5.5 汞離子溶液45
第四章 結果與討論46
4.1 微流道裝置的混合指數46
4.1.1 混合指數( Mixing Index )公式與原理46
4.1.2 不同雷諾數之混合指數47
4.1.3 通入微流道裝置之檢測區域49
4.2 微流道裝置的混合時間50
4.3 氧化石墨烯的淬滅效應51
4.3.1 時間對於氧化石墨烯淬滅效應的影響54
4.3.2 通過微流道不同雷諾數對於氧化石墨烯的淬滅效應55
4.4 在微流道裝置內汞離子的檢測57
4.4.1 通過微流道不同雷諾數對於檢測汞離子的影響57
4.4.2 通過微流道汞離子的檢測極限59
第五章 結論61
參考文獻62
參考文獻 1. Nathanson, H.C., Newell, W.E., Wickstrom, R.A., and Davis, J.R., The resonant gate transistor. IEEE Transactions on Electron Devices. 14(3): p. 117-133. (1967)
2. Jolly, R.D. and Muller, R.S., Miniature cantilever beams fabricated by anisotropic etching of silicon. Journal of The Electrochemical Society. 127(12): p. 2750-2754. (1980)
3. Tai, Y.-C. and Muller, R.S., IC-processed electrostatic synchronous micromotors. Sensors and Actuators. 20(1-2): p. 49-55. (1989)
4. Chen, P., Muller, R., and Andrews, A., Integrated silicon PI-FET accelerometer with proof mass. Sensors and Actuators. 5(2): p. 119-126. (1984)
5. Manz, A., Graber, N., and Widmer, H.á., Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical. 1(1-6): p. 244-248. (1990)
6. Abgrall, P. and Gue, A., Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. Journal of micromechanics and microengineering. 17(5): p. R15. (2007)
7. Terry, S.C., Jerman, J.H., and Angell, J.B., A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE transactions on electron devices. 26(12): p. 1880-1886. (1979)
8. Huang, X.C., Quesada, M.A., and Mathies, R.A., DNA sequencing using capillary array electrophoresis. Analytical chemistry. 64(18): p. 2149-2154. (1992)
9. Chiem, N. and Harrison, D.J., Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline. Analytical chemistry. 69(3): p. 373-378. (1997)
10. Bakajin, O., Carlson, R., Chou, C., Chan, S., Gabel, C., Knight, J., Cox, T., and Austin, R., Solid-State Sensor and Actuator Workshop. Hilton Head Island, SC. p. 116-119. (1998)
11. Kopp, M.U., De Mello, A.J., and Manz, A., Chemical amplification: continuous-flow PCR on a chip. Science. 280(5366): p. 1046-1048. (1998)
12. Santini Jr, J.T., Cima, M.J., and Langer, R., A controlled-release microchip. Nature. 397(6717): p. 335. (1999)
13. Ismagilov, R.F., Stroock, A.D., Kenis, P.J., Whitesides, G., and Stone, H.A., Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Applied Physics Letters. 76(17): p. 2376-2378. (2000)
14. Kamholz, A.E. and Yager, P., Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Biophysical journal. 80(1): p. 155-160. (2001)
15. Groisman, A., Enzelberger, M., and Quake, S.R., Microfluidic memory and control devices. Science. 300(5621): p. 955-958. (2003)
16. Raynal, F., Plaza, F., Beuf, A., Carrière, P., Souteyrand, E., Martin, J.-R., Cloarec, J.-P., and Cabrera, M., Study of a chaotic mixing system for DNA chip hybridization chambers. Physics of Fluids. 16(9): p. L63-L66. (2004)
17. Bynum, M.A. and Gordon, G.B., Hybridization enhancement using microfluidic planetary centrifugal mixing. Analytical chemistry. 76(23): p. 7039-7044. (2004)
18. Lien, K.-Y., Liu, C.-J., Lin, Y.-C., Kuo, P.-L., and Lee, G.-B., Extraction of genomic DNA and detection of single nucleotide polymorphism genotyping utilizing an integrated magnetic bead-based microfluidic platform. Microfluidics and Nanofluidics. 6(4): p. 539-555. (2009)
19. Oves, M., Khan, M.S., Zaidi, A., and Ahmad, E., Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview, in Toxicity of heavy metals to legumes and bioremediation. 2012, Springer. p. 1-27.
20. Clarkson, T.W., The toxicology of mercury. Critical reviews in clinical laboratory sciences. 34(4): p. 369-403. (1997)
21. Goldman, L.R., Shannon, M.W., and Pediatrics, A.A.o., committee on Environmental Health Technical report: mercury in the environment: implications for pediatricians. Pediatrics. 108(1): p. 197-205. (2001)
22. Hylander, L.D. and Goodsite, M.E., Environmental costs of mercury pollution. Science of the Total Environment. 368(1): p. 352-370. (2006)
23. Slemr, F., Schuster, G., and Seiler, W., Distribution, speciation, and budget of atmospheric mercury. Journal of atmospheric chemistry. 3(4): p. 407-434. (1985)
24. Schroeder, W.H. and Munthe, J., Atmospheric mercury—an overview. Atmospheric environment. 32(5): p. 809-822. (1998)
25. Krabbenhoft, D.P. and Sunderland, E.M., Global change and mercury. Science. 341(6153): p. 1457-1458. (2013)
26. Duruibe, J.O., Ogwuegbu, M., and Egwurugwu, J., Heavy metal pollution and human biotoxic effects. International Journal of physical sciences. 2(5): p. 112-118. (2007)
27. Wolfe, M.F., Schwarzbach, S., and Sulaiman, R.A., Effects of mercury on wildlife: a comprehensive review. Environmental Toxicology and Chemistry: An International Journal. 17(2): p. 146-160. (1998)
28. Sharma, D., Environmental pollution of mercury and its effects on human health in environmental ruin: the crisis of survival. New Delhi: Indus. Publishing. p. 129-139. (1993)
29. Mason, R.P., Fitzgerald, W.F., and Morel, F.M., The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochimica et Cosmochimica Acta. 58(15): p. 3191-3198. (1994)
30. Pirrone, N., Keeler, G.J., and Nriagu, J.O., Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric environment. 30(17): p. 2981-2987. (1996)
31. Benoit, J., Gilmour, C.C., Heyes, A., Mason, R., and Miller, C., Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. Biogeochemistry of environmentally important trace elements. (2003)
32. Mason, R.P., Choi, A.L., Fitzgerald, W.F., Hammerschmidt, C.R., Lamborg, C.H., Soerensen, A.L., and Sunderland, E.M., Mercury biogeochemical cycling in the ocean and policy implications. Environmental research. 119: p. 101-117. (2012)
33. Futsaeter, G. and Wilson, S. The UNEP global mercury assessment: sources, emissions and transport. in E3S Web of Conferences. 2013. EDP Sciences.
34. Rafaj, P., Bertok, I., Cofala, J., and Schoepp, W., Scenarios of global mercury emissions from anthropogenic sources. Atmospheric Environment. 79: p. 472-479. (2013)
35. Amos, H.M., Jacob, D.J., Streets, D.G., and Sunderland, E.M., Legacy impacts of all‐time anthropogenic emissions on the global mercury cycle. Global Biogeochemical Cycles. 27(2): p. 410-421. (2013)
36. Holmes, P., James, K., and Levy, L., Is low-level environmental mercury exposure of concern to human health? Science of the total environment. 408(2): p. 171-182. (2009)
37. Health, U.D.o. and Services, H., Toxicological profile for mercury. Georgia: Agency for Toxic Substances and Disease Registry. (1999)
38. Kinjo, Y., Akiba, S., Yamguchi, N., Mizuno, S., Watanabe, S., Wakamiya, J., Futatsuka, M., and Kato, H., Cancer Mortality in Minamata Disease Patients Exposed to Methymercu Through Fish Diet. Journal of epidemiology. 6(3): p. 134-138. (1996)
39. Haffner, H., Erdelkamp, J., Göller, E., Schweinsberg, F., and Schmidt, V., Morphological and toxicological findings after intravenous injection of metallic mercury. Deutsche medizinische Wochenschrift (1946). 116(36): p. 1342-1346. (1991)
40. Schofield, P., Dementia associated with toxic causes and autoimmune disease. International psychogeriatrics. 17(s1): p. S129-S147. (2005)
41. Haddad, J.K. and Stenberg Jr, E., Bronchitis due to acute mercury inhalation: Report of two cases. American Review of Respiratory Disease. 88(4): p. 543-545. (1963)
42. Rice, K.M., Walker Jr, E.M., Wu, M., Gillette, C., and Blough, E.R., Environmental mercury and its toxic effects. Journal of preventive medicine and public health. 47(2): p. 74. (2014)
43. Miller, S., Pallan, S., Gangji, A.S., Lukic, D., and Clase, C.M., Mercury-associated nephrotic syndrome: a case report and systematic review of the literature. American Journal of Kidney Diseases. 62(1): p. 135-138. (2013)
44. Li, S.-J., Zhang, S.-H., Chen, H.-P., Zeng, C.-H., Zheng, C.-X., Li, L.-S., and Liu, Z.-H., Mercury-induced membranous nephropathy: clinical and pathological features. Clinical Journal of the American Society of Nephrology. 5(3): p. 439-444. (2010)
45. Gardner, R.M., Nyland, J.F., and Silbergeld, E.K., Differential immunotoxic effects of inorganic and organic mercury species in vitro. Toxicology letters. 198(2): p. 182-190. (2010)
46. Ceccatelli, S., Daré, E., and Moors, M., Methylmercury-induced neurotoxicity and apoptosis. Chemico-biological interactions. 188(2): p. 301-308. (2010)
47. Kazantzis, G., Mercury exposure and early effects: an overview. Medicina del Lavoro. 93(3): p. 139-147. (2002)
48. Iavicoli, I., Fontana, L., and Bergamaschi, A., The effects of metals as endocrine disruptors. Journal of Toxicology and Environmental Health, Part B. 12(3): p. 206-223. (2009)
49. Minoia, C., Ronchi, A., Pigatto, P., and Guzzi, G., Effects of mercury on the endocrine system. Critical reviews in toxicology. 39(6): p. 538; author reply 539-538; author reply 539. (2009)
50. Davis, B., Price, H., O'connor, R., Fernando, R., Rowland, A., and Morgan, D., Mercury vapor and female reproductive toxicity. Toxicological Sciences. 59(2): p. 291-296. (2001)
51. Boujbiha, M.A., Hamden, K., Guermazi, F., Bouslama, A., Omezzine, A., Kammoun, A., and El Feki, A., Testicular toxicity in mercuric chloride treated rats: association with oxidative stress. Reproductive toxicology. 28(1): p. 81-89. (2009)
52. YOSHIDA, M., Placental to fetal transfer of mercury and fetotoxicity. The Tohoku journal of experimental medicine. 196(2): p. 79-88. (2002)
53. Castoldi, A.F., Coccini, T., Ceccatelli, S., and Manzo, L., Neurotoxicity and molecular effects of methylmercury. Brain research bulletin. 55(2): p. 197-203. (2001)
54. Novoselov, K.S. and Geim, A., The rise of graphene. Nat. Mater. 6(3): p. 183-191. (2007)
55. Peierls, R. Quelques propriétés typiques des corps solides. in Annales de l'institut Henri Poincaré. 1935.
56. Landau, L., Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion. 11(545): p. 26-35. (1937)
57. Mermin, N.D., Crystalline order in two dimensions. Physical Review. 176(1): p. 250. (1968)
58. Venables, J. and Spiller, G., Nucleation and growth of thin films, in Surface Mobilities on Solid Materials. 1983, Springer. p. 341-404.
59. Evans, J., Thiel, P., and Bartelt, M.C., Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surface Science Reports. 61(1-2): p. 1-128. (2006)
60. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Electric field effect in atomically thin carbon films. science. 306(5696): p. 666-669. (2004)
61. Lee, C., Wei, X., Kysar, J.W., and Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. science. 321(5887): p. 385-388. (2008)
62. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N., Superior thermal conductivity of single-layer graphene. Nano letters. 8(3): p. 902-907. (2008)
63. Bolotin, K.I., Sikes, K., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., and Stormer, H., Ultrahigh electron mobility in suspended graphene. Solid State Communications. 146(9-10): p. 351-355. (2008)
64. Stoller, M.D., Park, S., Zhu, Y., An, J., and Ruoff, R.S., Graphene-based ultracapacitors. Nano letters. 8(10): p. 3498-3502. (2008)
65. Zhang, Y., Tan, Y.-W., Stormer, H.L., and Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. nature. 438(7065): p. 201. (2005)
66. Hummers Jr, W.S. and Offeman, R.E., Preparation of graphitic oxide. Journal of the american chemical society. 80(6): p. 1339-1339. (1958)
67. Brodie, B.C., XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London. (149): p. 249-259. (1859)
68. Staudenmaier, L., Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft. 31(2): p. 1481-1487. (1898)
69. Gao, W., The chemistry of graphene oxide, in Graphene oxide. 2015, Springer. p. 61-95.
70. Kim, J., Cote, L.J., Kim, F., Yuan, W., Shull, K.R., and Huang, J., Graphene oxide sheets at interfaces. Journal of the American Chemical Society. 132(23): p. 8180-8186. (2010)
71. Wang, Y., Li, Z., Wang, J., Li, J., and Lin, Y., Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in biotechnology. 29(5): p. 205-212. (2011)
72. Vivek, V. and Kim, E.S. Novel acoustic-wave micromixer. in Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No. 00CH36308). 2000. IEEE.
73. Yang, Z., Goto, H., Matsumoto, M., and Maeda, R., Active micromixer for microfluidic systems using lead‐zirconate‐titanate (PZT)‐generated ultrasonic vibration. ELECTROPHORESIS: An International Journal. 21(1): p. 116-119. (2000)
74. Lee, Y.-K., Deval, J., Tabeling, P., and Ho, C.-M., Chaotic mixing in electrokinetically and pressure driven micro flows, in Microreaction Technology. 2001, Springer. p. 185-191.
75. Paik, P., Pamula, V.K., Pollack, M.G., and Fair, R.B., Electrowetting-based droplet mixers for microfluidic systems. Lab on a Chip. 3(1): p. 28-33. (2003)
76. Chang, C.-C. and Yang, R.-J., Electrokinetic mixing in microfluidic systems. Microfluidics and Nanofluidics. 3(5): p. 501-525. (2007)
77. Liu, R.H., Stremler, M.A., Sharp, K.V., Olsen, M.G., Santiago, J.G., Adrian, R.J., Aref, H., and Beebe, D.J., Passive mixing in a three-dimensional serpentine microchannel. Journal of microelectromechanical systems. 9(2): p. 190-197. (2000)
78. Lu, L.-H., Ryu, K.S., and Liu, C., A magnetic microstirrer and array for microfluidic mixing. Journal of microelectromechanical systems. 11(5): p. 462-469. (2002)
79. Johnson, T.J., Ross, D., and Locascio, L.E., Rapid microfluidic mixing. Analytical chemistry. 74(1): p. 45-51. (2002)
80. Chen, J.K. and Yang, R.J., Electroosmotic flow mixing in zigzag microchannels. Electrophoresis. 28(6): p. 975-983. (2007)
81. Kamholz, A.E., Weigl, B.H., Finlayson, B.A., and Yager, P., Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Analytical chemistry. 71(23): p. 5340-5347. (1999)
82. Gobby, D., Angeli, P., and Gavriilidis, A., Mixing characteristics of T-type microfluidic mixers. Journal of Micromechanics and microengineering. 11(2): p. 126. (2001)
83. Xia, H., Wan, S., Shu, C., and Chew, Y., Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers. Lab on a Chip. 5(7): p. 748-755. (2005)
84. Hsieh, S.-S., Lin, J.-W., and Chen, J.-H., Mixing efficiency of Y-type micromixers with different angles. International Journal of Heat and Fluid Flow. 44: p. 130-139. (2013)
85. Das, S.S., Tilekar, S.D., Wangikar, S.S., and Patowari, P.K., Numerical and experimental study of passive fluids mixing in micro-channels of different configurations. Microsystem Technologies. 23(12): p. 5977-5988. (2017)
86. Furukawa, K., Ueno, Y., Takamura, M., and Hibino, H., Graphene FRET aptasensor. Acs Sensors. 1(6): p. 710-716. (2016)
87. Varghese, S.S., Zhu, Y., Davis, T.J., and Trowell, S.C., FRET for lab-on-a-chip devices—Current trends and future prospects. Lab on a Chip. 10(11): p. 1355-1364. (2010)
88. Jares-Erijman, E.A. and Jovin, T.M., FRET imaging. Nature biotechnology. 21(11): p. 1387. (2003)
89. Hussain, S.A., An introduction to fluorescence resonance energy transfer (FRET). arXiv preprint arXiv:0908.1815. (2009)
90. Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der physik. 437(1‐2): p. 55-75. (1948)
91. Braslavsky, S.E., Fron, E., Rodríguez, H.B., San Román, E., Scholes, G.D., Schweitzer, G., Valeur, B., and Wirz, J., Pitfalls and limitations in the practical use of Förster's theory of resonance energy transfer. Photochemical & Photobiological Sciences. 7(12): p. 1444-1448. (2008)
92. Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., and Cech, T.R., Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. cell. 31(1): p. 147-157. (1982)
93. Tuerk, C., Eddy, S., Parma, D., and Gold, L., Autogenous translational operator recognized by bacteriophage T4 DNA polymerase. Journal of molecular biology. 213(4): p. 749-761. (1990)
94. Biotechnology, D.C.f., The advantages of Aptamer and Antibody. Development Center for Biotechnology. (2017)
95. Zhou, W., Huang, P.-J.J., Ding, J., and Liu, J., Aptamer-based biosensors for biomedical diagnostics. Analyst. 139(11): p. 2627-2640. (2014)
96. Strehlitz, B., Nikolaus, N., and Stoltenburg, R., Protein detection with aptamer biosensors. Sensors. 8(7): p. 4296-4307. (2008)
97. Li, M., Zhou, X., Ding, W., Guo, S., and Wu, N., Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury (II). Biosensors and Bioelectronics. 41: p. 889-893. (2013)
98. Cui, X., Zhu, L., Wu, J., Hou, Y., Wang, P., Wang, Z., and Yang, M., A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosensors and Bioelectronics. 63: p. 506-512. (2015)
99. Guo, Y., Wang, Z., Shao, H., and Jiang, X., Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon. 52: p. 583-589. (2013)
100. del Campo, A. and Greiner, C., SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. Journal of micromechanics and microengineering. 17(6): p. R81. (2007)
101. Lorenz, H., Despont, M., Fahrni, N., Brugger, J., Vettiger, P., and Renaud, P., High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sensors and Actuators A: Physical. 64(1): p. 33-39. (1998)
102. Micro.Chem. SU-8 2000 Permanent Epoxy Negative Photoresist. Available from: http://microchem.com/pdf/SU-82000DataSheet2025thru2075Ver4.pdf.
103. Li, Y., Xu, Y., Feng, X., and Liu, B.-F., A rapid microfluidic mixer for high-viscosity fluids to track ultrafast early folding kinetics of G-quadruplex under molecular crowding conditions. Analytical chemistry. 84(21): p. 9025-9032. (2012)
104. Attri, P., Gaur, J., Choi, S., Kim, M., Bhatia, R., Kumar, N., Park, J.H., Cho, A.E., Choi, E.H., and Lee, W., Interaction studies of carbon nanomaterials and plasma activated carbon nanomaterials solution with telomere binding protein. Scientific reports. 7(1): p. 2636. (2017)
105. Wu, X., Xing, Y., Zeng, K., Huber, K., and Zhao, J.X., Study of fluorescence quenching ability of graphene oxide with a layer of rigid and tunable silica spacer. Langmuir. 34(2): p. 603-611. (2018)
106. Ting Yu, K., Graphene Oxide Fluorescence Resonance Energy Transfer ( FRET ) Aptasensor for Mercury (II) Ion Detection , MS Thesis , Department of Engineering Science , National Chung Kung University ,Taiwan. (2018)

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw