進階搜尋


下載電子全文  
系統識別號 U0026-1108201522475100
論文名稱(中文) 利用半導體雷射週期一動態於光雙單調制邊帶轉換的研究
論文名稱(英文) Performance Analysis for Optical DSB-to-SSB Conversion Using Period-One Nonlinear Dynamics of Semiconductor Lasers
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 鄭婷之
研究生(英文) Ting-chih Cheng
學號 l76024218
學位類別 碩士
語文別 中文
論文頁數 59頁
口試委員 指導教授-黃勝廣
口試委員-魏明達
口試委員-曾碩彥
口試委員-徐旭政
中文關鍵字 半導體雷射  週期一動態  光纖傳輸 
英文關鍵字 nonlinear dynamics  period-one  chromatic dispersion  fiber transmission 
學科別分類
中文摘要   本篇論文是利用光注入半導體雷射產生非線性週期一動態,並以此機制將光雙調制邊帶轉換成光單調制邊帶,進而改善因色散效應而產生的微波能量衰減。整個光注入半導體雷射系統當中,為了瞭解各個物理量對於週期一或光單調制邊帶的變化關係,本論文裡會討論在連續波注入或光雙調制邊帶注入時,藉由不同光注入條件的搭配來了解其趨勢,並從中去控制系統調制光單調制邊帶程度。在最後將光單調制邊帶置於長光纖傳遞,觀察是否改善由色散效應產生的微波能量衰減現象,並且整合調制系統與傳輸系統,得出先將光雙調制邊帶經過傳輸系統再進行調制轉換後,眼圖大小較先調制轉換後再進行傳輸時的情況大。
英文摘要 The application of radio-over-fiber (ROF) technology has been widely investigated, where optical single-sideband modulation (SSB) is preferred as opposed to double-sideband modulation (DSB) due to microwave power fading and high bandwidth efficiency. Therefore, the research on DSB-to-SSB is of highly interest and has become popular. In this thesis, period-one dynamics of semiconductor lasers is proposed for such conversion. Only a typical laser is required as the conversion unit. Such conversion can be done for microwave frequency up to hundreds of GHz by simply adjusting input optical power or frequency. This increases flexibility and re-configurability of the proposed scheme.
論文目次 口試委員會審定書 #
中文摘要 i
ABSTRACT ii
誌謝 viii
目錄 ix
圖列表 xi
第1章 前言 1
1.1 研究背景 1
1.2 研究動機 4
1.3 論文架構 10
第2章 半導體雷射之非線性動態系統 11
2.1 雷射基本原理與非線性動態特性 11
2.2 光注入半導體雷射 13
2.2.1 光注入動態原理介紹 13
2.2.2 實驗架構 15
2.2.3 動態地圖與實驗結果討論 16
2.3 週期一動態特性與分析 24
第3章 光雙調制邊帶轉換單調制邊帶 31
3.1 利用週期一進行光雙單調制邊帶轉換之概念 31
3.2 實驗架構 32
3.3 實驗結果與討論 35
3.4 光雙單調制邊帶轉換之特性分析與微波頻率可調性(tunability) 39
第4章 光雙單調制邊帶轉換應用 45
4.1 光纖遠距傳輸能量衰減原理與模擬 45
4.2 實驗架構 47
4.3 實驗結果與討論 49
第5章 結論與未來展望 54
參考文獻 56
參考文獻 [1] Reza Abdolee, Razali Ngah, Vida Vakilian and Tharek A.Rahman, “Application of Radio-Over-Fiber (ROF) in mobile communication,” Asia-Pacific Conference on Applied Electromagnetics, pp. 1-5, Dec. 2007.
[2] Christina Lim, Ampalavanapillai Nirmalathas, Masuduzzaman Bakaul, Prasanna Gamage, Ka-Lun Lee, Yizhuo Yang, Dalma Novak, and Rod Waterhouse, “Fiber-Wireless Networks and Subsystem Technologies,” Journal of Lightwave Technology, vol. 28, no. 4, pp. 390-405, Feb. 2010.
[3] Noriffah Abd Latif, Razali Ngah, Hamza M. R. Al-Khafaji, T. Prakoso, and N.S.M. Noor, “Development of Central Base Station for Radio over Fiber System,” IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), pp. 119-122, Dec. 2014.
[4] Jianping Yao, “Microwave Photonics,” Journal of Lightwave Technology, vol. 27, no. 3, pp. 314-335, Feb. 2009.
[5] J. D. Ralston, S. Weisser, I. Esquivias, E. C. Larkins, J. Rosenzweig,P. J. Tasker, and J. Fleissner, “Control of differential gain, nonlinear gain and damping factor for high-speed application of GaAs-based MQW lasers,” IEEE J. Quantum Electron., vol. 29, no. 6, pp. 1648-1659, Jun. 1993.
[6] O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 µm wavelength,” Electron. Lett., vol. 33, pp. 488-489, 1997.
[7] J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett., vol. 28, pp. 2309-2311, 1992.
[8] P. T. Shih, J. Chen, C. T. Lin, W. J. Jiang, H. S. Huang, P. C. Peng, and S. Chi, “Optical millimeter-wave signal generation via frequency 12-Tupling,” J. Lightw. Technol., vol. 28, no. 1, pp. 71-78, Jan. 2010.
[9] D. J. Derickson, R. J. Helkey, A. Mar, J. G. Wasserbauer, Y. G. Wey, and J. E. Bowers, “Microwave and millimeter wave signal generation using mode-locked semiconductor lasers with intra-waveguide saturable absorbers,” in Proc. IEEE MTT-S Int. Microw. Symp. Digest, pp. 753-756, Jun. 1992.
[10] A. C. Bordonalli, B. Cai, A. J. Seeds, and P. J. Williams, “Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure,” IEEE Photon. Technol. Lett., vol. 8, no. 1, pp. 151-153, Jan. 1996.
[11] R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett., vol. 28, pp. 82-83, Jan. 1992.
[12] J. S. Seregelyi and J. C. Belisle, “A discriminator-aided, optical phaselock loop constructed from commercial components,” Proc. SPIE, vol. 5577, pp. 407-412, Sep. 2004.
[13] H. Okamura and K. Iwatsuki, “Simultaneous oscillation of wavelength-tunable, singlemode lasers using an Er-doped fibre amplifier,” Electron. Lett., vol. 28, pp. 461-463, Feb. 1992.
[14] D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeterwave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 9, pp. 2270-2276, Sep. 1995.
[15] Ulrik Gliese, Torben Nørskov Nielsen, Søren Nørskov, and K. E. Stubkjær, “Multifunctional Fiber-Optic Microwave Links Based on Remote Heterodyne Detection,” IEEE Transactions On Microwave Theory And Techniques, vol. 46, no. 5, pp. 458-468, May 1998.
[16] X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron., vol. 32, no. 7, pp. 1141-1149, Jul. 1996.
[17] X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” J. Lightwave Technol., vol. 36, no. 1, pp. 79-84, Jan. 2000.
[18] S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 5, pp. 974–981, Sep./Oct. 2004.
[19] S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Exp., vol. 15, pp. 14921–14935, Oct. 2007.
[20] U. Gliese, S. Ngrskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1716-1724, Oct. 1996.
[21] Graham H. Smith, Dalma Novak, and Zaheer Ahmed, “Overcoming Chromatic-Dispersion Effects in Fiber-Wireless Systems Incorporating External Modulators,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 8, pp. 1410-1415, Aug. 1997.
[22] Xiaoyan Wang, Masanori Hanawa, Kazuhiko Nakamura, Katsumi Takano, Kiyoshi Nakagawa, “Sideband Suppression Characteristics of Optical SSB Generation Filter with Sampled FBG Based 4-taps Optical Hilbert Transformer,” 15th Asia-Pacific Conference on Communications(APCC), pp. 622-625, Oct. 2009.
[23] Ze Li, Hao Chi, Xianmin Zhang, and Jianping Yao, “Optical Single-Sideband Modulation Using a Fiber-Bragg-Grating-Based Optical Hilbert Transformer,” IEEE Photonics Technology Letters, vol. 23, no. 9, pp. 558-560, May 2011.
[24] Weiwei Zhang and Robert A. Minasian, “Widely Tunable Single-Passband Microwave Photonic Filter Based on Stimulated Brillouin Scattering,” IEEE Photonics Technology Letters, vol. 23, no. 23, pp. 1775-1777, Dec. 2011.
[25] Sheng-Kwang Hwang, Jia-Ming Liu, and J. Kenton White, “Characteristics of period one oscillations in semiconductor lasers subject to optical injection,” IEEE Journal Of Selected Topics In Quantum Electronics, vol. 10, no. 5, pp. 974-981, Sep./Oct. 2004.
[26] Sze-Chun Chan, Sheng-Kwang Hwang, and Jia-Ming Liu, “Period one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Optics Express, vol. 15, no. 22, pp. 14921-14935, Oct. 2007.
[27] Yu-Han Hung, Cheng-Hao Chu, and Sheng-Kwang Hwang, “Optical DSB‐to‐SSB conversion using period‐one nonlinear dynamics of semiconductor lasers for radio‐over‐fiber links,” Optics Letters, vol. 38, no. 9, pp. 1482-1484, May 2013.
[28] Yu-Han Hung and Sheng-Kwang Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Optics Letters, vol. 38, no. 17, pp. 3355-3358, Sep. 2013.
[29] Jia-Ming Liu, How-Foo Chen, and Shuo Tang, “Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical Communications,” Digital Communications Using Chaos and Nonlinear Dynamics Institute for Nonlinear Science, pp. 285-340, 2006.
[30] T. B. Simpson, and J. M. Liu, “Enhanced modulation bandwidth in injection locked semiconductor laser,” IEEE Photonics Technology Letters, vol. 9, no. 10, pp. 1322-1324, Oct. 1997.
[31] Jia-Ming Liu and T. B. Simpson, “Four-Wave Mixing and Optical Modulation in a Semiconductor Laser,” IEEE Journal of Quantum Electronics, vol. 30, no. 4, pp. 957-965, Apr. 1994.
[32] J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation Bandwidth, Noise, and Stability of a Semiconductor Laser Subject to Strong Injection Locking,” IEEE Photonics Technology Letters, vol. 9, no. 10, pp. 1325-1327, Oct. 1997.
[33] Y. Okajima, S.K. Hwang, and J.M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Optics Communications, vol. 219, pp. 357-364, Apr. 2003.
[34] S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz Intrinsic Bandwidth for Direct Modulation in 1.3-um Semiconductor Lasers Subject to Strong Injection Locking,” IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 972-974, Apr. 2004.
[35] T.B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Optics Communications, vol. 215, pp. 135-151, Jan. 2003.
[36] S.K. Hwang, and J.M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Optics Communications, vol. 183, Sep. 2000.
[37] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis and P. M. Alsing, “Period‐doubling route to chaos in a semiconductor laser subject to optical injection,” Applied Physics Letters, vol. 64, no. 26, pp. 3539-3541, Jun. 1994.
[38] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Physical Review A, vol. 51, no. 5, pp. 4181-4185, May 1995.
[39] Graham H. Smith, Dalma Novak, and Zaheer Ahmed, “Overcoming Chromatic-Dispersion Effects in Fiber-Wireless Systems Incorporating External Modulators,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 8, pp. 1410-1415, Aug. 1997.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw