進階搜尋


下載電子全文  
系統識別號 U0026-1108201518233400
論文名稱(中文) 牛血漿白蛋白對雙十六碳鏈離子對雙親分子/界面活性添加物混合系統之Langmuir單分子層行為的影響
論文名稱(英文) Effects of bovine serum albumin on the Langmuir monolayer behavior of mixed dihexadecyl-chain ion pair amphiphile/surface active additive systems
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 張庭瑜
研究生(英文) Ting-Yu Chang
學號 N36024393
學位類別 碩士
語文別 中文
論文頁數 176頁
口試委員 指導教授-張鑑祥
口試委員-李玉郎
口試委員-陳澄河
口試委員-周宗翰
中文關鍵字 氣/液界面  螢光顯微鏡法  離子對雙親分子/蛋白質交互作用  混合單分子層  單分子層 
英文關鍵字 air/liquid interface  fluorescence microscopy  surfactant/protein interaction  Langmuir monolayer 
學科別分類
中文摘要 本研究利用表面壓-面積等溫線的量測,配合螢光顯微鏡(fluorescence microscopy, FM)探討於連續來回壓縮-擴張界面的條件下,液相中牛血漿白蛋白(bovine serum albumin, BSA)對氣/液界面上雙十六碳鏈離子對雙親分子(dihexadecyl-chained ion pair amphiphile, HTMA-HS)/界面活性添加物(陰離子型界面活性劑、陽離子型界面活性劑、DPPE-PEG2000)混合系統之單分子層行為的影響。
在BSA吸附分子層存在之氣/液界面上分佈HTMA-HS單分子層後,連續來回壓縮-擴張界面,HTMA-HS分子容易隨BSA離開氣/液界面,導致界面上HTMA-HS分子的顯著損失,使得HTMA-HS分子的動態界面活性受到抑制。且當溶液中BSA的濃度越高時,損失的HTMA-HS分子越多,從FM影像也可以觀察到這個現象。而HTMA-HS分子的損失可能是因為帶正電的頭基HTMA+和帶負電的BSA因靜電作用相吸,或與HTMA-HS分子之碳氫鏈與BSA疏水結構的作用有關。因此當BSA因高表面壓而離開界面時,也造成HTMA-HS分子的損失。
在BSA吸附分子層存在之氣/液界面上同時分佈HTMA-HS/DHDP莫耳比例為9/1之混合單分子層後,於連續來回壓縮-擴張界面的條件下,當溶液中BSA的濃度較高時,抑制混合分子層動態界面活性的情形變得更加明顯,但在溶液中BSA濃度較低的情況下,則可以減少BSA所造成的分子損失。可能是因為當溶液中有較高濃度的蛋白質及離子時,使原本在pH = 7時解離程度就較低的DHDP變得更不易解離,因此帶負電的DHDP與BSA之間的靜電排斥較弱,無法避免BSA與HTMA-HS/DHDP分子層作用而造成損失。
分佈HTMA-HS/DODAB莫耳比例為9/1之混合單分子層於BSA吸附分子層存在之氣/液界面上,於連續來回壓縮-擴張界面的條件下,當溶液中BSA濃度較高時,BSA所造成混合分子層的自由分子損失變得更加顯著。DODAB因較長的疏水碳鏈而較疏水,DODAB與HTMA-HS之間的作用及帶正電的DODAB皆可能影響albumin與混合單分子層的作用。
在同樣的條件下,DPPE-PEG2000單分子層可以利用立體障礙避免BSA吸附於界面上,減少BSA與界面上分子的作用。但在HTMA-HS/DPPE-PEG2000/BSA混合分子層系統中,DPPE-PEG2000的添加也可能影響混合分子層分子排列的緊密程度。因此,當液相中含有較高濃度的BSA時,添加DPPE-PEG2000並無法降低BSA對混合分子層的影響。在低濃度BSA的情況下,當HTMA-HS/DPPE-PEG2000莫耳比為97:3時,對降低BSA對混合分子層的影響有最好的效果。
英文摘要 In this study, the effects of bovine serum albumin (BSA) on the mixed Langmuir monolayer behavior of hexadecyltrimethylammonium-hexadecylsulfate (HTMA-HS) with dihexadecyl phosphate (DHDP), dioctadecyldimethylammonium bromide (DODAB), and dipalmitoyl phosphatidylethanolamine-polyethylene glycol 2000 (DPPE-PEG2000), respectively, were investigated by the Langmuir trough approach with fluorescence microscopy. Cyclic compression-expansion isotherms of the monolayers were examined to elucidate the induced removal characteristic of the molecules at the air/liquid interface. For mixed monolayers of HTMA-HS with adsorbed BSA at the cyclic interface, HTMA-HS would leave the interface with BSA during the interface compression stage, causing the loss of HTMA-HS at the interface and the inhibited dynamic surface activity of HTMA-HS. The addition of negatively charged surfactant, DHDP, could reduce the inhibition of BSA because of the electrostatic repulsion between BSA and the mixed monolayer. The intermolecular interactions of the mixed monolayers also needed to be considered. The presence of DPPE-PEG2000 in the mixed monolayers would affect the monolayer structure.
論文目次 摘要 I
表目錄 XVII
圖目錄 XX
第一章 緒論 1
1-1前言 1
1-2 文獻回顧 3
1-2-1肺泡界面活性劑與急性呼吸窘迫症候群 3
1-2-2 蛋白質在氣/液界面上的吸附行為 6
1-2-3 氣/液界面上單分子層的行為 9
1-2-4 肺泡界面活性劑與血漿蛋白質的交互作用 12
1-2-5 聚乙二醇的立體穩定性 16
1-3 研究動機與目的 18
第二章 實驗 19
2-1 藥品 19
2-2 儀器 21
2-2-1 Langmuir槽 21
2-2-2 螢光顯微鏡 23
2-3 實驗步驟 25
2-3-1 藥品配製 25
2-3-2 Langmuir單分子層行為的分析 26
2-3-3 單分子層遲滯行為的測量 27
2-3-4 白蛋白質吸附分子層平衡表面壓的測量 28
2-3-5 白蛋白質吸附分子層遲滯行為的測量 28
2-3-6 界面活性劑/白蛋白質混合分子層遲滯行為的測量 29
2-3-7 螢光顯微鏡的操作 29
第三章 結果與討論 32
3-1 氣/液界面上單分子層的界面行為 32
3-1-1 HTMA-HS單分子層的遲滯行為及表面形態 32
3-1-2 DHDP單分子層的遲滯行為 39
3-1-3 DODAB單分子層的遲滯行為 41
3-1-4 DPPE-PEG2000單分子層的遲滯行為 42
3-2 氣/液界面上混合單分子層的界面行為 46
3-2-1 HTMA-HS/DHDP混合系統 46
3-2-2 HTMA-HS/DODAB混合系統 50
3-2-3 HTMA-HS/DPPE-PEG2000混合系統 54
3-3 氣/液界面上白蛋白吸附分子層的界面行為 61
3-3-1 表面壓-時間吸附曲線 61
3-3-2 遲滯行為 63
3-3-3 螢光分子對吸附分子層的影響 69
3-4 氣/液界面上HTMA-HS/白蛋白混合分子層的界面行為 72
3-4-1 遲滯行為 72
3-4-2 氣/液界面上HTMA-HS/白蛋白混合分子層的表面形態 81
3-5 氣/液界面上HTMA-HS/DHDP/白蛋白混合分子層的界面行為 89
3-5-1 DHDP/白蛋白混合分子層的遲滯行為 89
3-5-2 HTMA-HS/DHDP/白蛋白混合分子層的遲滯行為 94
3-5-3 HTMA-HS/DHDP/白蛋白混合分子層的表面形態 102
3-6 氣/液界面上HTMA-HS/DODAB/白蛋白混合分子層的界面行為 111
3-6-1 DODAB/白蛋白混合分子層的遲滯行為遲滯行為 111
3-6-2 HTMA-HS/DODAB/白蛋白混合分子層的遲滯行為 116
3-6-3 HTMA-HS/DODAB/白蛋白混合分子層的表面形態 125
3-7 氣/液界面上HTMA-HS/DPPE-PEG2000/白蛋白混合分子層的界面行為 132
3-7-1 DPPE-PEG2000/白蛋白混合分子層的遲滯行為 132
3-7-2 HTMA-HS/DPPE-PEG2000/白蛋白混合分子層的遲滯行為 137
3-7-3 HTMA-HS/DPPE-PEG2000/白蛋白混合分子層的表面形態 158
第四章 結論 164
參考文獻 Baoukina, S., L. Monticelli, H. J. Risselada, S. J. Marrink and D. P. Tieleman, “The molecular mechanism of lipid monolayer collapse,” Proceedings of the National Academy of Sciences of the United States of America, 105, 31, 10803-10808, 2008.
Bartucci, R., M. Pantusa, D. Marsh and L. Sportelli, “Interaction of human serum albumin with membranes containing polymer-grafted lipids: spin-label ESR studies in the mushroom and brush regimes,” Biochimica et Biophysica Acta (BBA)-Biomembranes, 1564, 1, 237-242, 2002.
Bourbon, J. R., “Pulmonary surfactant: biochemical, functional, regulatory, and clinical concepts,” CRC Press, 1991.
Brancato, S. and A. Serfis, “Incorporation of blood-clotting proteins into phospholipid Langmuir monolayers: A fluorescence microscopy study,” Journal of Colloid and Interface Science, 239, 1, 139-144, 2001.
Cai, P., C. R. Flach and R. Mendelsohn, “An infrared reflection-absorption spectroscopy study of the secondary structure in (KL4)(4)K, a therapeutic agent for respiratory distress syndrome, in aqueous monolayers with phospholipids,” Biochemistry, 42, 31, 9446-9452, 2003.
Chang, C.-H., S.-D. Yu, T.-K. Chuang and C.-N. Liang, “Roles of γ-globulin in the dynamic interfacial behavior of mixed dipalmitoyl phosphatidylcholine/γ-globulin monolayers at air/liquid interfaces,” Journal of colloid and interface science, 227, 2, 461-468, 2000.
Cheng, C. C. and C. H. Chang, “Retardation effect of tyloxapol on inactivation of dipalmitoyl phosphatidylcholine surface activity by albumin,” Langmuir, 16, 2, 437-441, 2000.
Cho, D. and M. Cornec, “Adsorptive behavior of a globular protein with a monoglyceride monolayer spread on the aqueous surface,” Korean Journal of Chemical Engineering, 16, 3, 371-376, 1999.
Claesson, P., A. M. Carmona-Ribeiro and K. Kurihara, “Dihexadecyl phosphate monolayers: intralayer and interlayer interactions,” The Journal of Physical Chemistry, 93, 2, 917-922, 1989.
Clements, J. A., “Surface tension of lung extracts,” Experimental Biology and Medicine, 95, 1, 170-172, 1957.
Crawford, N. F. and R. M. Leblanc, “Serum albumin in 2D: a Langmuir monolayer approach,” Adv Colloid Interface Sci, 207, 131-138, 2014.
Creuwels, L., L. M. G. vanGolde and H. P. Haagsman, “The pulmonary surfactant system: Biochemical and clinical aspects,” Lung, 175, 1, 1-39, 1997.
Cruz, A., L.-A. Worthman, A. Serrano, C. Casals, K. Keough and J. Perez-Gil, “Microstructure and dynamic surface properties of surfactant protein SP-B/dipalmitoylphosphatidylcholine interfacial films spread from lipid-protein bilayers,” European Biophysics Journal, 29, 3, 204-213, 2000.
Dos Santos, N., C. Allen, A.-M. Doppen, M. Anantha, K. A. Cox, R. C. Gallagher, G. Karlsson, K. Edwards, G. Kenner and L. Samuels, “Influence of poly (ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding,” Biochimica et Biophysica Acta (BBA)-Biomembranes, 1768, 6, 1367-1377, 2007.
Dynarowicz-Łątka, P., A. Dhanabalan and O. N. Oliveira, “Modern physicochemical research on Langmuir monolayers,” Advances in colloid and interface science, 91, 2, 221-293, 2001.
Fuchimukai, T., T. Fujiwara, A. Takahashi and G. Enhorning, “Artificial pulmonary surfactant inhibited by proteins,” Journal of Applied Physiology, 62, 2, 429-437, 1987.
Goerke, J., “Pulmonary surfactant: functions and molecular composition,” Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1408, 2-3, 79-89, 1998.
Graham, D. and M. Phillips, “Proteins at liquid interfaces: II. Adsorption isotherms,” Journal of Colloid and Interface Science, 70, 3, 415-426, 1979.
Gunasekara, L., W. M. Schoel, S. Schurch and M. W. Amrein, “A comparative study of mechanisms of surfactant inhibition,” Biochimica Et Biophysica Acta-Biomembranes, 1778, 2, 433-444, 2008.
Hall, S. B., A. R. Venkitaraman, J. A. Whitsett, B. A. Holm and R. H. Notter, “Importance of hydrophobic apoproteins as constituents of clinical exogenous surfactants,” Am Rev Respir Dis, 145, 1, 24-30, 1992.
Hallman, M., T. A. Merritt, T. Akino and K. Bry, “Surfactant protein A, phosphatidylcholine, and surfactant inhibitors in epithelial lining fluid: correlation with surface activity, severity of respiratory distress syndrome, and outcome in small premature infants,” American Review of Respiratory Disease, 144, 6, 1376-1384, 1991.
Halperin, A., “Polymer brushes that resist adsorption of model proteins: Design parameters,” Langmuir, 15, 7, 2525-2533, 1999.
Harris, J. M., “Poly (ethylene glycol) chemistry: biotechnical and biomedical applications,” Springer Science & Business Media, 1992.
Holm, B., “Surfactant inactivation in adult respiratory distress syndrome,” Pulmonary Surfactant: From Molecular Biology to Clinical Practice. B. Robertson, LMJ Van Golde, and JJ Batenburg, editors. Elsevier Science, Amsterdam, The Netherlands, 665-684, 1992.
Holm, B. A., G. Enhorning and R. H. Notter, “A biophysical mechanism by which plasma-proteins inhibit lung surfactant activity,” Chemistry and Physics of Lipids, 49, 1-2, 49-55, 1988.
Holm, B. A., W. D. Wang and R. H. Notter, “Multiple mechanisms of lung surfactant inhibition,” Pediatric Research, 46, 1, 85-93, 1999.
Jones, M. N. and D. Chapman, “Micelles, monolayers, and biomembranes,” John Wiley and Sons, Inc., 605 Third Avenue, New York, New York 10158-0012, USA Baffin Lane, Chichester PO 19 1UD, England, 1995.
Kajiyama, T. and M. Aizawa, “New developments in construction and functions of organic thin films,” Elsevier, 1996.
Keough, K. M. W., C. S. Parsons, P. T. Phang and M. G. Tweeddale, “Interactions between plasma-proteins and pulmonary surfactant - surface balance studies,” Canadian Journal of Physiology and Pharmacology, 66, 9, 1166-1173, 1988.
Kuo, R. R., C. H. Chang, Y. M. Yang and J. R. Maa, “Induced removal of dipalmitoyl phosphatidylcholine by the exclusion of fibrinogen from compressed monolayers at air/liquid interfaces,” Journal of Colloid and Interface Science, 257, 1, 108-115, 2003.
Lasic, D. D. and F. J. Martin, “Stealth liposomes,” CRC press, 1995.
Lefevre, T. and M. Subirade, “Interaction of β-lactoglobulin with phospholipid bilayers: a molecular level elucidation as revealed by infrared spectroscopy,” International journal of biological macromolecules, 28, 1, 59-67, 2000.
Li, W.-T., Y.-M. Yang and C.-H. Chang, “Langmuir monolayer behavior of an ion pair amphiphile with a double-tailed cationic surfactant,” Colloids and Surfaces B: Biointerfaces, 66, 2, 187-194, 2008.
Liu, Y.-L. and C.-H. Chang, “Inhibitory effects of fibrinogen on the dynamic tension-lowering activity of dipalmitoyl phosphatidylcholine dispersions in the presence of tyloxapol,” Colloid and Polymer Science, 280, 7, 683-687, 2002.
Lu, J. R., T. J. Su and J. Penfold, “Adsorption of serum albumins at the air/water interface,” Langmuir, 15, 20, 6975-6983, 1999.
MacRitchie, F., “Desorption of proteins from the air/water interface,” Journal of colloid and interface science, 105, 1, 119-123, 1985.
MacRitchie, F. and A. Alexander, “Kinetics of adsorption of proteins at interfaces. Part I. The role of bulk diffusion in adsorption,” Journal of colloid science, 18, 5, 453-457, 1963a.
MacRitchie, F. and A. Alexander, “Kinetics of adsorption of proteins at interfaces. Part II. The role of pressure barriers in adsorption,” Journal of colloid science, 18, 5, 458-463, 1963b.
MacRitchie, F. and A. Alexander, “Kinetics of adsorption of proteins at interfaces. Part III. The role of electrical barriers in adsorption,” Journal of Colloid Science, 18, 5, 464-469, 1963c.
Magdassi, S., “Surface activity of proteins: chemical and physicochemical modifications,” CRC Press, 1996.
Maiti, K., S. C. Bhattacharya, S. P. Moulik and A. K. Panda, “Effect of bovine serum albumin on the functionality and structure of catanionic surfactant at air-buffer interface,” Mater Sci Eng C Mater Biol Appl, 33, 2, 836-843, 2013.
McClellan, S. J. and E. I. Franses, “Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin,” Colloids and Surfaces B: Biointerfaces, 28, 1, 63-75, 2003.
Mendelsohn, R., J. W. Brauner and A. Gericke, “External infrared reflection-absorption spectrometry monolayer films at the air-water-interface,” Annual Review of Physical Chemistry, 46, 305-334, 1995.
Miller, N. J., A. D. Postle, S. Orgeig, G. Koster and C. B. Daniels, “The composition of pulmonary surfactant from diving mammals,” Respiratory Physiology & Neurobiology, 152, 2, 152-168, 2006.
Nag, K., J. G. Munro, K. Inchley, S. Schurch, N. O. Petersen and F. Possmayer, “SP-B refining of pulmonary surfactant phospholipid films,” American Journal of Physiology-Lung Cellular and Molecular Physiology, 277, 6, L1179-L1189, 1999.
Nakahara, H., S. Lee, G. Sugihara, C.-H. Chang and O. Shibata, “Langmuir monolayer of artificial pulmonary surfactant mixtures with an Amphiphilic peptide at the Air/Water enterface: Comparison of new preparations with surfacten (Surfactant TA),” Langmuir, 24, 7, 3370-3379, 2008.
Notter, R. H., “Lung surfactants: basic science and clinical applications,” CRC Press, 2000.
Pantusa, M., L. Sportelli and R. Bartucci, “Spectroscopic and calorimetric studies on the interaction of human serum albumin with DPPC/PEG:2000-DPPE membranes,” Eur Biophys J, 37, 6, 961-973, 2008.
PastranaRios, B., S. Taneva, K. M. W. Keough, A. J. Mautone and R. Mendelsohn, “External reflection absorption infrared spectroscopy study of lung surfactant proteins SP-B and SP-C in phospholipid monolayers at the air/water interface,” Biophysical Journal, 69, 6, 2531-2540, 1995.
Perez-Gil, J. and K. M. W. Keough, “Interfacial properties of surfactant proteins,” Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1408, 2-3, 203-217, 1998.
Piknova, B., V. Schram and S. B. Hall, “Pulmonary surfactant: phase behavior and function,” Current Opinion in Structural Biology, 12, 4, 487-494, 2002.
Serrano, A. G. and J. Perez-Gil, “Protein-lipid interactions and surface activity in the pulmonary surfactant system,” Chemistry and Physics of Lipids, 141, 1-2, 105-118, 2006.
Tabak, S. and R. Notter, “Effect of plasma proteins on the dynamic π—A characteristics of saturated phospholipid films,” Journal of Colloid and Interface Science, 59, 2, 293-300, 1977.
Taneva, S. G. and K. M. Keough, “Dynamic surface properties of pulmonary surfactant proteins SP-B and SP-C and their mixtures with dipalmitoylphosphatidylcholine,” Biochemistry, 33, 49, 14660-14670, 1994.
Tripp, B. C., J. J. Magda and J. D. Andrade, “Adsorption of globular proteins at the air/water interface as measured via dynamic surface tension: concentration dependence, mass-transfer considerations, and adsorption kinetics,” Journal of colloid and interface science, 173, 1, 16-27, 1995.
van Aken, G. A. and M. T. Merks, “Adsorption of soluble proteins to dilating surfaces,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 114, 221-226, 1996.
Veldhuizen, E. J. A. and H. P. Haagsman, “Role of pulmonary surfactant components in surface film formation and dynamics,” Biochimica Et Biophysica Acta-Biomembranes, 1467, 2, 255-270, 2000.
Veldhuizen, R., K. Nag, S. Orgeig and F. Possmayer, “The role of lipids in pulmonary surfactant,” Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1408, 2-3, 90-108, 1998.
Von Nahmen, A., M. Schenk, M. Sieber and M. Amrein, “The structure of a model pulmonary surfactant as revealed by scanning force microscopy,” Biophysical journal, 72, 1, 463-469, 1997.
Wang, Z. D., S. B. Hall and R. H. Notter, “Dynamic surface-activity of films of lung surfactant phospholipids, hydrophobic proteins, and neutral lipids,” Journal of Lipid Research, 36, 6, 1283-1293, 1995.
Warriner, H. E., J. Ding, A. J. Waring and J. A. Zasadzinski, “A concentration-dependent mechanism by which serum albumin inactivates replacement lung surfactants,” Biophysical Journal, 82, 2, 835-842, 2002.
Wen, X. Y. and E. I. Franses, “Adsorption of bovine serum albumin at the air/water interface and its effect on the formation of DPPC surface film,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, 190, 3, 319-332, 2001.
Wustneck, R., J. Perez-Gil, N. Wustneck, A. Cruz, V. B. Fainerman and U. Pison, “Interfacial properties of pulmonary surfactant layers,” Advances in Colloid and Interface Science, 117, 1-3, 33-58, 2005.
Ybert, C., W. X. Lu, G. Moller and C. M. Knobler, “Collapse of a monolayer by three mechanisms,” Journal of Physical Chemistry B, 106, 8, 2004-2008, 2002.
Yin, C.-L. and C.-H. Chang, “Infrared spectroscopy analysis of mixed DPPC/fibrinogen layer behavior at the air/liquid interface under a continuous compression-expansion condition,” Langmuir, 22, 15, 6629-6634, 2006.
Zasadzinski, J. A., J. Ding, H. E. Warriner, F. Bringezu and A. J. Waring, “The physics and physiology of lung surfactants,” Current Opinion in Colloid & Interface Science, 6, 5-6, 506-513, 2001.
Zhao, J., D. Vollhardt, G. Brezesinski, S. Siegel, J. Wu, J. B. Li and R. Miller, “Effect of protein penetration into phospholipid monolayers: morphology and structure,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, 171, 1-3, 175-184, 2000.
Zuo, Y. Y., R. A. W. Veldhuizen, A. W. Neumann, N. O. Petersen and F. Possmayer, “Current perspectives in pulmonary surfactant - Inhibition, enhancement and evaluation,” Biochimica Et Biophysica Acta-Biomembranes, 1778, 10, 1947-1977, 2008.
陳宥廷, “牛血漿蛋白對dipalmitoyl phosphatidylcholine/雙十六碳鏈離子對雙親分子之混合Langmuir單分子層行為的影響,” 國立成功大學化學工程學系碩士論文, 2013
曾珈瑤, “碳氫鏈長度對於含雙鏈陽離子型界面活性劑之離子對雙親分子/膽固醇混合Langmuir單分子層行為的影響,” 國立成功大學化學工程學系碩士論文, 2010
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw