進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1108201516102800
論文名稱(中文) 以第一原理探討氮摻雜磷化鎵奈米線之電性結構
論文名稱(英文) Investigation of the electronic properties of Nitrogen-doped GaP nanowires by first-principle calculation
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 陳鵬業
研究生(英文) Peng-Ye Chen
學號 N16011859
學位類別 碩士
語文別 中文
論文頁數 70頁
口試委員 口試委員-林震銘
口試委員-陳國聲
口試委員-屈子正
指導教授-陳鐵城
中文關鍵字 第一原理  奈米線  磷化鎵  摻雜 
英文關鍵字 First principle  nanowires  GaP  doping 
學科別分類
中文摘要 各種高科技產業的快速發展和微機電製程技術的快速進步,使材料結構的尺度和元件製程的精確度已經邁入奈米尺度(nanoscale)的操控世界。本研究主要是使用摻雜氮原子來改善GaP奈米線的導電性,以第一原理為理論基礎,利用VASP量子化學計算軟體模擬GaP摻雜氮原子的電性結構變化,使用能帶結構和電荷密度圖來探討GaP的導電性;另外,討論模擬摻雜不同濃度與導電性的關係,並計算形成能來判斷摻雜的結構穩定性,以確保摻雜問題的正確性。模擬結果顯示氮摻雜較容易摻在磷化鎵奈米線的表面上。當氮摻雜取代鎵原子時,Γ位置的導帶最底端會接近費米能使整體能隙降低。然而,當氮摻雜取代磷原子時,Γ位置的能帶沒有明顯的變化使整體能隙降僅有些微的減少。由電子狀態密度圖可以知道摻雜後各原子的能量分佈情形,了解改善導電性的原因為摻雜原子在費米能附近有局域性的能量分佈,及其鄰近的P原子在費米能附近的能量貢獻。且局域性較明顯表示場發射時所能激發之電子數越多,所得場發射電流越大,因此具有作為場發射材料以及奈米半導體元件之潛力。
英文摘要 Due to the rapid development and advances in MEMS technology, the manipulation of material structure and the accuracy of component processing have already progressed to a nanoscale world. In this study, Nitrogen (N) atoms were doped into GaP nanowires to enhance the properties of intrinsic electronic conductivity. The electronic structure of GaP nanowires after doping N atoms were investigated by using first-principles calculation. We evaluate electronic conductivity of GaP nanowires by band structure and density of states. The relation between the doping concentration and electronic conductivity was then discussed. Moreover, the formation energy was calculated to evaluate the structural stability for doping GaP nanowires. Simulation results show that N atoms are easily doped near the surface of GaP nanowires. When N atoms substitute for the Ga atoms, the band gap decreases significantly at the Γ point. However, when N atoms substitute for the P atom, the band gap only decreases slightly at the Γ point. The energy distributions of each atom can be obtained by calculating the density of states. Furthermore, the nar-row band near the Fermi level is mainly attributed to the substituted atoms and its neigh-boring P atoms.
論文目次 摘要 I
誌謝 VII
目錄 VIII
圖目錄 XI
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究背景與動機 8
1.4 本文架構 9
第二章 奈米線簡介 10
2.1 奈米線概述 10
2.2 奈米線結構的種類 11
2.3 奈米線應用與前景 12
2.4 奈米線製備方法 14
第三章 密度泛函理論 17
3.1 薛丁格方程式 18
3.2 電子系統 20
3.3 Born-Oppenheimer近似 21
3.4 Thomas-Fermi 模型 23
3.5 Hohenberg-Kohn定理 23
3.6 Kohn-Sham方法 24
3.7 局域密度函數近似法 26
3.8 廣義梯度近似 27
3.9 自恰方程式 28
3.10 布里淵區 30
3.11 能帶理論 30
3.12 布洛赫定理 31
3.13 贗勢法 32
第四章 計算結果與分析 35
4.1 模擬驗證 35
4.2 模擬參數設定 37
4.2.1 計算細節 38
4.2.2 模型建立 38
4.3 摻雜結構之穩定性 41
4.4 GaP奈米線之電性結構分析 51
4.4.1 未摻雜GaP奈米線之電性結構分析 51
4.4.2 比較不同摻雜方式GaP奈米線之電性結構差異 54
4.4.3 摻雜不同濃度離子GaP奈米線之電性結構分析 56
第五章 結論與未來展望 65
5.1 結論 65
5.2 未來展望 67
參考文獻 68
參考文獻 [1] A. D. Berry, R. J. Tonucci, and M. Fatemi, "Fabrication of GaAs and InAs wires in nanochannel glass," Applied Physics Letters, vol. 69, pp. 2846-2848, Nov 1996.
[2] R. C. Johnson, "IBM Nanowires add photonics to silicon," http://www.eetimes.com/document.asp?doc_id=1321928&print=yes, 2014.
[3] R. Agarwal and C. M. Lieber, "Semiconductor nanowires: optics and optoelectronics," Applied Physics a-Materials Science & Processing, vol. 85, pp. 209-215, Nov 2006.
[4] S. A. Dayeh, D. P. R. Aplin, X. T. Zhou, P. K. L. Yu, E. T. Yu, and D. L. Wang, "High electron mobility InAs nanowire field-effect transistors," Small, vol. 3, pp. 326-332, Feb 2007.
[5] N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, "Sulfur passivation and contact methods for GaAs nanowire solar cells," Nanotechnology, vol. 22, Jun 2011.
[6] F. Patolsky, G. Zheng, and C. M. Lieber, "Nanowire sensors for medicine and the life sciences," Nanomedicine, vol. 1, pp. 51-65, Jun 2006.
[7] M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, "Crystal-structure change of gaas and inas whiskers from zincblende to wurtzite type," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 31, pp. 2061-2065, Jul 1992.
[8] V. Gottschalch, G. Wagner, J. Bauer, H. Paetzelt, and M. Shirnow, "VLS growth of GaN nanowires on various substrates," Journal of Crystal Growth, vol. 310, pp. 5123-5128, Nov 2008.
[9] W. Q. Han, S. S. Fan, Q. Q. Li, and Y. D. Hu, "Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction," Science, vol. 277, pp. 1287-1289, Aug 1997.
[10] S. M. Gao, Y. Xie, J. Lu, G. A. Du, W. He, D. L. Cui, et al., "Mild benzene-thermal route to GaP nanorods and nanospheres," Inorganic Chemistry, vol. 41, pp. 1850-1854, Apr 2002.
[11] S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink , A. Belabbes , F. Bechstedt , J. E. M. Haverkort , and E. P. A. M. Bakkers, "Direct Band Gap Wurtzite Gallium Phosphide Nanowires," Nano Letters, vol. 13, pp. 1559-1563, Apr 2013.
[12] M. Jeppsson, K. A. Dick, J. B. Wagner, P. Caroff, K. Deppert, L. Samuelson and Lars-Erik Wernersson, "GaAs/GaSb nanowire heterostructures grown by MOVPE," Journal of Crystal Growth, vol. 310, pp. 4115-4121, Aug 2008.
[13] X. H. Peng and A. Copple, "Origination of the direct-indirect band gap transition in strained wurtzite and zinc-blende GaAs nanowires: A first principles study," Physical Review B, vol. 87, Mar 2013.
[14] M. P. Persson and H. Q. Xu, "Electronic structure of nanometer-scale GaAs whiskers," Applied Physics Letters, vol. 81, pp. 1309-1311, Aug 2002.
[15] M. Jeppsson, K. A. Dick, H. A. Nilsson, N. Skold, J. B. Wagner, P. Caroff and Lars-Erik Wernersson, "Characterization of GaSb nanowires grown by MOVPE," Journal of Crystal Growth, vol. 310, pp. 5119-5122, Nov 15 2008.
[16] W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and Sarah R. Kurtz and C. Nauka, "Effect of nitrogen on the electronic band structure of group III-N-V alloys," Physical Review B, vol. 62, pp. 4211-4214, Aug 2000.
[17] H. P. Xin, C. W. Tu, Y. Zhang, and A. Mascarenhas, "Effects of nitrogen on the band structure of GaNxP1-x alloys," Applied Physics Letters, vol. 76, pp. 1267-1269, Mar 2000.
[18] I. A. Buyanova, G. Pozina, J. P. Bergman, W. M. Chen, H. P. Xin, and C. W. Tu, "Time-resolved studies of photoluminescence in GaNxP1-x alloys: Evidence for indirect-direct band gap crossover," Applied Physics Letters, vol. 81, pp. 52-54, Jul 2002.
[19] W. G. Bi and C. W. Tu, "N incorporation in GaP and band gap bowing of CaNxP1-x," Applied Physics Letters, vol. 69, pp. 3710-3712, Dec 1996.
[20] Y. J. Kuang, S. Sukrittanon, H. Li, and C. W. Tu, "Growth and photoluminescence of self-catalyzed GaP/GaNP core/shell nanowires on Si(111) by gas source molecular beam epitaxy," Applied Physics Letters, vol. 100, Jan 2012.
[21] S. Filippov, S. Sukrittanon, Y. J. Kuang, C. Tu, P. O. A. Persson, W. M. M. Chen and Buyanova IA, "Origin of Strong Photoluminescence Polarization in GaNP Nanowires," Nano Letters, vol. 14, pp. 5264-5269, Sep 2014.
[22] K. M. Varahramyan, D. Ferrer, E. Tutuc and S. K. Banerjee, "Band engineered epitaxial Ge-SixGe1-x core-shell nanowires heterostructures," Applied Physics Letters, vol. 95, Nov 2009.
[23] 金屬材料專業知識百科網 , "化學氣相沉積——化學氣相沉積(CVD)類型——金屬有機化合物化學氣相沉積(MOCVD)," http://baike.satipm.com/index.php?doc-view-111823.html, 2013.
[24] 金屬材料專業知識百科網 , "大功率半導體雷射器的發展與應用——大功率半導體雷射器的材料生長及器件製作——大功率半導體雷射器的材料生長——大功率半導體雷射器的材料生長技術," http://baike.satipm.com/index.php?doc-view-107307.html, 2013.
[25] P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Physical Review B, vol. 136, pp. 864, Nov 1964.
[26] W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects," Physical Review, vol. 140, pp. 1133, Nov 1965.
[27] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, "Iterative Minimization Techniques for Abinitio Total-Energy Calculations - Molecular-Dynamics and Conjugate Gradients," Reviews of Modern Physics, vol. 64, pp. 1045-1097, Oct 1992.
[28] M. Ishikawa and T. Nakayama, "First-principles study of Nitrogen-induced band-gap reduction in III-V semiconductors," Physics Procedia, pp. 1363-1366, Jan 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw