進階搜尋


下載電子全文  
系統識別號 U0026-1108201416393200
論文名稱(中文) 使用一般化DCAR/TCAR演算法於GPS/BDS單一時刻週波值解算之研究
論文名稱(英文) GPS/BDS single-epoch ambiguity resolution using a generalized DCAR/TCAR algorithm
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 102
學期 2
出版年 103
研究生(中文) 江冠昱
研究生(英文) Kuan-Yu Chiang
學號 P66014044
學位類別 碩士
語文別 中文
論文頁數 91頁
口試委員 指導教授-楊名
口試委員-吳究
口試委員-韓仁毓
中文關鍵字 GPS  BDS  單一時刻整數週波值解算  一般化DCAR/TCAR 
英文關鍵字 GPS  BDS  single-epoch ambiguity resolution  generalized DCAR/TCAR 
學科別分類
中文摘要 在全球導航衛星系統(Global Navigation Satellite Systems, GNSS)中,隨著各國衛星系統的建立,未來將朝向多系統以及多頻率結合的發展。在臺灣地區由於中國BDS的建立,將能夠提供更多的觀測衛星數目及不同頻率的觀測資料,因此若能有效結合GPS與BDS將對整數週波值的解算效能有所幫助,進而提供更穩定的即時動態定位成果。在本研究中使用GPS雙頻與BDS三頻真實觀測資料,並分別利用DCAR、TCAR以及一般化DCAR/TCAR演算法來解算單系統與雙系統單一時刻整數週波值,藉此分析GPS與BDS雙系統結合後對於單一時刻整數週波值的解算所帶來的效能改善。研究成果顯示,經由GPS與BDS雙系統的結合後,由於BDS的加入,將提供更多的觀測衛星數量來加強衛星幾何的分布,能有效提升單一時刻整數週波值的求解效能。且當觀測環境處於遮蔽嚴重的地區時,透過雙系統的結合,能夠有效解決單系統因單一時刻觀測衛星數量不足造成無法求解的問題。並在一般情況下,能夠利用二次差分削減大部分電離層延遲誤差時,透過雙系統的結合,能夠有效的解決單系統因電離層延遲誤差影響導致無法提供可靠求解成果的問題。而在定位成果中,由於雙系統的結合可以提供更完整的單一時刻整數週波值解算成果,因此相較於單系統定位成果來說,不管是定位的連續性或者是定位的精度都有所提升。
英文摘要 As the Chinese BeiDou Navigation Satellite System (BDS) has been announced to provide operational service over the Asia-pacific region, it will increase the number of satellites in view and will have a significant effect on ambiguity resolution (AR) for fast and high-accuracy positioning. Thus, it is important to better understand and demonstrate the capabilities of the GPS/BDS combined system. In this thesis, numerical analysis is given to the single-epoch AR and RTK positioning capabilities of the GPS/BDS combined system. This study focuses on dual- and triple-frequency AR by using DCAR, TCAR and generalized DCAR/TCAR methods, and compares the performance between standalone and combined systems. Compared to the performance of GPS-only and BDS-only systems, the GPS/BDS combined system can increase the success rate for single-epoch ambiguity resolution and provide high accuracy RTK positioning.
論文目次 摘 要 I
ABSTRACT II
誌 謝 VIII
目 錄 IX
表目錄 XI
圖目錄 XII
第一章 緒論 1
§1-1 前言 1
§1-2 研究背景 2
§1-2-1 現代化GPS、GLONASS 2
§1-2-2 新發展Galileo、北斗系統 6
§1-3 文獻回顧 7
§1-4 研究動機及目的 9
§1-5 研究方法 10
第二章 衛星定位基本原理 11
§2-1 觀測量 11
§2-1-1 虛擬距離觀測資料 11
§2-1-2 載波相位觀測資料 12
§2-2 衛星定位誤差來源 14
§2-2-1 軌道誤差 14
§2-2-2 時錶誤差 16
§2-2-3 大氣延遲誤差 17
§2-2-4 天線相位中心偏差 18
§2-2-5 多路徑效應 19
§2-3 相對定位原理 19
§2-3-1 一次差分 20
§2-3-2 二次差分 23
§2-3-3 最小二乘平差法 24
§2-3-4 誤差傳播 25
§2-3-5 LAMBDA整數搜尋法 27
§2-3-6 比率測試 28
第三章 TCAR與DCAR單一時刻整數週波值解算方法 29
§3-1 三頻載波相位觀測量線性組合 29
§3-1-1 二次差分載波相位觀測量線性組合 30
§3-1-2 超寬巷與寬巷組合觀測量 32
§3-1-3 無電離層線性組合觀測量 33
§3-2 單一時刻整數週波值解算 34
§3-2-1 TCAR演算法 34
§3-2-2 DCAR演算法 40
第四章 GPS與BDS雙系統單一時刻定位方法 44
§4-1 雙系統觀測量結合 44
§4-1-1 時間系統 44
§4-1-2 坐標系統 47
§4-2 一般化DCAR/TCAR演算法 47
§4-3 雙系統定位解計算 54
第五章 實驗與成果分析 56
§5-1 實驗方法與流程 56
§5-2 實驗資料 56
§5-3 單一時刻整數週波值求解效能分析方法 58
§5-3-1 成功率 58
§5-3-2 成果檢定 59
§5-4 單一時刻整數週波值解算成果分析 60
§5-4-1 實驗一:單系統與雙系統 60
§5-4-2 實驗二:觀測環境 67
§5-4-2-1 遮蔽之影響 67
§5-4-2-2 電離層延遲之影響 71
§5-4-3 實驗三:定位精度 82
第六章 結論與建議 84
參考文獻 87
參考文獻 Cai, Z., Han, C., Lin, Y., Wang, X. BDT performance and time offset analysis. In: Proceedings of the ICG 2013 (online presentation), United Arab Emirates, November 10-14, 2013.
Chen, H., Huang, Y., Chiang, K., Yang, M., Rau, R. (2011) The performance comparison between GPS and BeiDou-2/compass: A perspective from Asia, Journal of the Chinese Institute of Engineers, 32(5):679-689.
Cheng, P., Wen, H., Cheng, Y., Wang, H. (2009) Parameters of the CGCS2000 ellipsoid and comparisons with GRS80 and WGS84. Cartographica Sinica, 38(3):189-194.
Chu, F., Yang, M. (2014) GPS/Galileo long baseline computation: method and performance analyses. GPS Solutions, 18(2):263-272.
CSNO (2013) BeiDou navigation satellite system signal in space interface control document (Version 2.0), China Satellite Navigation Office, Beijing.
de Jonge, P., Tiberius, C.C.J.M. (1996) The LAMBDA method for integer ambiguity estimation: implementation aspects. Delft geodetic computing centre, Delft University of Technology, Netherland.
Deng, C., Tang, W., Liu, J., Shi, C. (2014) Reliable single-epoch ambiguity resolution for short baselines using combined GPS/BeiDou system. GPS Solutions, 18(3):375-386.
Euler, H.J., Schaffrin, B. (1991) On a measure for the discernibility between different ambiguity solutions in the static-kinematic GPS-mode. Springer-verlag, New York.
Feng, Y. (2003) Combined Galileo and GPS: a technical perspective. Journal of Global Positioning Systems, 2(1):67-72.
Feng, Y. (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. Journal of Geodesy, 82(12):847-862.
Feng, Y., Li, B. (2008) A benefit of multiple carrier GNSS signals: regional scale network-based RTK with doubled inter-station distances. Journal of Spatial Science, 53(1):135-147.
Feng, Y., Li, B. (2009) Three carrier ambiguity resolutions: generalized problems, models and solutions. Journal of Satellite Positioning System, 8(2):115-123.
Feng, Y., Rizos, C. (2009) Network-based geometry-free carrier ambiguity resolution and phase bias calibration. GPS Solutions, 13(1):43-56.
Forssell’, B., Martin-Neira, M., Harris, R. Carrier phase ambiguity resolution in GNSS-2. In: Proceedings of the ION GPS 1997, Kansas City, Missouri, September 16-19, 1997. pp. 1727-1736.
Ghilani, C.D. (2010) Adjustment computations: spatial data analysis, 5th edition. John Willey & Sons, New Jersey.
Grafarend, E., Krumm, F.W., Schwarze, V.S. (2003) Geodesy - the challenge of the 3rd millennium. Springer-Verlag, Berlin.
Han, S. (1997) Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning. Journal of Geodesy, 71(6):351-361.
Han, S., Rizos, C. The impact of two additional civilian GPS frequencies on ambiguity resolution strategies. In: Proceedings of the ION 1999, Cambridge, Massachusetts, June 27-30, 1999. pp. 315-321.
Hatch, R., Jung, J., Enge, P., Pervan, B. (2000) Civilian GPS: the benefits of three frequencies. GPS Solutions, 3(4):1-9.
He, H., Li, J., Yang, Y., Xu, J., Guo, H., Wang, A. (2014) Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solutions, 18(3):393-403.
Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E. (2008) GNSS-global navigation satellite systems. Springer-verlag, Wien Graz.
Hopfield, H.S. (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical Research, 74(18):4487-4499.
Ji, S., Chen, W., Zhao, C., Ding, X., Chen, Y. (2007) Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods. GPS Solutions, 11(4):259-268.
Ji, S., Chen, W., Ding, X., Chen, Y., Zhao, C., Hu, C. (2013) An improved cascading ambiguity resolution (CAR) method with Galileo multiple frequencies. Survey Review, 45(328):51-58.
Kaplan, E.D., Hegarty, C.J. (2005) Understanding GPS: principles and application, Artech House, Norwood, Massachusetts.
Kleusberg, A., Teunissen, P.J.G. (1996) GPS for geodesy. Springer-verlag, Berlin.
Klobuchar, J.A. (1987) Ionospheric time-delay algorithm for single- frequency GPS users. IEEE transactions on aerospace and electronic system, AES-23(3):325-331.
Leick, A. (2004) GPS satellite surveying, 3rd edition. John Willey & Sons, New York.
Li, H., Dang, Y., Bei, J., Yang, F. (2013) Research on spatio tempora unification of BDS/GPS/GLONASS multi-mode fusion navigation and positioning. Journal of Geodesy and Geodynamics, 33(4):73-78.
Li, B. (2008) Generation of third code and phase signals based on dual-frequency GPS measurements. In: Proceedings of the ION GNSS 2008, Savannah, Georgia, September 16-19, 2008. pp. 2020-2830.
Odijk, D. Weighting ionospheric corrections to improve fast GPS positioning over medium distance. In: Proceedings of the ION GPS 2000, Salt Lake City, Utah, September 19-22, 2000. pp. 1113-1123.
Parkins, A. (2011) Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm. GPS Solutions, 15(4):391-402.
Pratt, M., Burke, B., Misra, P. Single-epoch integer ambiguity resolution with GPS-
GLONASS L1-L2 data. In: Proceedings of the ION GPS 1998, Nashville, Tennessee, September 15-18, 1998. pp. 389-398.
Revnivykh, S. GLONASS status and modernization. In: Proceedings of the ICG 2012 (online presentation), Beijing, November 4-9, 2012.
Schaffrin, B., Bock, Y. (1988) A unified scheme for processing GPS dual-band phase observations. Journal of Geodesy, 62(2):142-160.
Seeber, G. (2003) Satellite geodesy, 2nd edition. Walter de Gruyter, Berlin.
Tang, W., Deng, C., Shi C, Liu J (2014) Triple-frequency carrier ambiguity resolution for Beidou navigation satellite system. GPS Solutions, 18(3):335-344.
Teunissen, P.J.G. (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, 70(1-2):65-82.
Teunissen, P.J.G., Verhagen, S. (2009) The GNSS ambiguity ratio-test revisited: a better way of usint it. Survey Review, 41(312):138-151.
Teunissen, P.J.G., Odolinski, R., Odijk, D. (2014) Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles. Journal of Geodesy, 88(4):335-350.
Verhagen, S., Teunissen, P.J.G. (2013) The ratio test for future GNSS ambiguity resolution. GPS Solutions, 17(4):535-548.
Vdovin, V. National reference systems of the Russian federation, used in GLONASS. including the user and fundamental segment. In: Proceedings of the ICG 2013 (online presentation), Dubai, United Arab Emirates, November 11, 2013.
Vollath, U., Birnbach, S., Landau, H. Analysis of three-carrier ambiguity resolution (TCAR) technique for precise relative positioning In GNSS-2. In: Proceedings of the ION GPS 1998, Nashville, Tennessee, September 15-18, 1998. pp. 417-426.
Wang, J., Lee, H., Hewitson, S., Rizos, C., Barnes, J. (2003) Sensitivity analysis for GNSS integer carrier phase ambiguity validation test. University of New South Wales, Sydney.
Wei, Z. (2008) China geodetic coordinate system 2000. Journal of Geodesy and Geodynamics, 28(6):1-5.
Wells, D., Beck, N., Delikaraoglou, D., Kleusberg, A., Krakiwsky, E.J., Lachapelle, G., Langley, R.B., Nakiboglu, M., Schwarz, K.P., Tranquilla, J.M., Vanicek, P. (1986) Guide to GPS positioning. Canadian GPS Associates, Fredericton.
Xu, G. (2003) GPS theory, algorithms and application. Springer-Verlag, New York.
Zhang, W., Cannon, E., Olivier, J., Alves, P. Investigation of combined GPS/GALILEO cascading ambiguity resolution schemes. In: Proceedings of ION GPS/GNSS 2003, Portland, Oregon, September 9-12, 2003. pp. 1-12.
Zhang, W. (2005) Triple frequency cascading ambiguity resolution for modernized GPS and GALILEO. MSc. Thesis, University of Calgary, Alberta.
Zhao, C., Ou, J., Yuan, Y. (2005) Positioning accuracy and reliability of GALILEO, integrated GPS-GALILEO system based on single positioning model. Chinese Science Bulletin, 50(12):1252-1260.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw