進階搜尋


下載電子全文  
系統識別號 U0026-1108201014433400
論文名稱(中文) 台灣附近波形重定之測高資料精度評估
論文名稱(英文) Assessment of Taiwan Retracked Altimetry Data
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系碩博士班
系所名稱(英) Department of Geomatics
學年度 98
學期 2
出版年 99
研究生(中文) 高煥欽
研究生(英文) Huan-Chin Kao
學號 p6697109
學位類別 碩士
語文別 中文
論文頁數 102頁
口試委員 指導教授-郭重言
口試委員-黃金維
口試委員-鄭凱謙
中文關鍵字 門檻值演算法  改良型門檻值演算法 
英文關鍵字 threshold retracker  modified threshold retracker 
學科別分類
中文摘要 衛星測高應用於陸地面與淺海區域,會產生反射波形前緣中點偏移的現象,以至於無法求得準確之距離,造成觀測精度不佳,因此為改善複雜波形對於測高觀測的影響進而發展出波形重定(waveform retracking)技術,用以提昇靠海岸邊之衛星測高資料精度與品質,以及陸地各種應用。
本研究對衛星測高資料進行波形重定,用於台灣各項地理環境之研究探討。研究區域分別為台灣內陸河川水位變動分析、西部海域精度評估與農田區域水文研究,研究資料採用10-Hz TOPEX/POSEIDON (T/P)與20-Hz JASON-2資料,涵蓋時間分別為1992年12月-2002年8月(cycle 10-cycle 364)和2008年8月-2010年2月(cycle 7-cycle 61)。應用之波形重定演算法包含OCOG(Offset Center of Gravity)演算法、門檻值演算法(threshold retracker)、改良型門檻值演算法(modified threshold retracker),以及ice retracker,用以去除波形雜訊,重新估計波形前緣中點,計算出距離改正量後加入原始資料修正,得到更為準確的距離觀測量。
台灣內陸河川水位變動分析成果顯示,受到台灣河流獨特特性的影響,如河道寬度窄小、河流長度短、枯水期長、兩岸河堤較高,以及T/P衛星取樣解析度的不足,使得T/P測高資料與河川水位之比較結果並不理想。而利用20-Hz JASON-2的高取樣解析度資料進行研究,但因為資料長度僅涵蓋1年半,無法得到最終結論,故需要更長時間的觀測量來驗證成果。
西部海域精度評估範圍分為以下幾個區域:1. pass 164通過之台灣海峽海域、2. 以北緯24.75度為分界點,將台灣海峽之pass 164資料分成兩部分、3. 範圍介於北緯20度至北緯23度之西太平洋海域之pass 164、4. 通過範圍介於北緯20度至北緯28度之海洋區域之pass 051,並以台灣陸地為分界線分為南北兩半部,南半部以海深200公尺再細分為深海區與淺海區。本研究應用各類波形重定演算法成功提昇T/P與JASON-2測高衛星於淺海海域之資料品質與精度,其改善率最高可達約80%,而深海海域也可達45%。最適合之波形重定演算法則因地制宜。
於農田水文研究方面,研究區域為雲林縣土庫鎮與元長鄉,利用波形重定後之衛星測高資料配合既有之水文資料如地下水位、雨量與河流水位資料,探討相互之間的關係。研究成果顯示10%改良型門檻值演算法有效抑制陸地波形雜訊,改善原始測高資料,波形重定後之測高資料明顯顯示出土庫與元長的陸地皆在下降當中,與本區過度使用地下水灌溉農田,造成地層下陷的情形不謀而合。波形重定後之衛星測高資料與地下水位於土庫與元長之相關係數分別達到0.71與0.43,顯示地下水位與測高觀測成果有一定的關連性,但與雨量和河水水位資料並無明顯相關性。
英文摘要 The midpoints of the leading edges of altimetric radar waveforms could cause displacement when satellite altimetry observes land surfaces or shallow oceans, resulting in inaccurate measured distances between the satellite and the surface and unacceptable data quality. Therefore, waveform retracking technologies were successfully developed to improve the accuracy of altimetry measurements for the coastal or terrestrial applications.
This study mainly focuses on using the retracked altimetry data including 10-Hz TOPEX/POSEIDON (T/P) covering cycle 10-364 (1992/12-2002/08) and 20-Hz JASON-2 cycle 7-61(2008/8-2010/02) data to investigate or monitor the various environments around Taiwan; for example, to assess the shallow-ocean retracked altimetry measurements in western coasts of Taiwan, to monitor height changes over rice fields, and to gauge water level changes of small inland rivers. Since the roughness and elevation variabilities of non-ocean surfaces such as lands, inland lakes, rivers, and wetlands are not exactly identical to oceans, altimetric radar waveforms have to be carefully retracked by recalculating the midpoint of the leading edge to optimally determine accurate altimetry range measurements. In this study, several waveform retracking algorithms, including the Offset Center of Gravity (OCOG) retracking, the threshold, the modified threshold retracking, and ice retracking, were applied one by one to find out the optimal retracker for different research regions.
The analysis of water level changes in small rivers indicated that 10-Hz sample resolution of retracked T/P measurements are not good enough to monitor river water changes because of the uniqueness of Taiwan rivers featuring narrow and short watercourses, high riverbanks, and long dry season. In addition, higher sample of retracked data, 20-Hz JASON-2 measurements, were used as well, but the time span only covers one and half years, which is too short to give final conclusions.
In the shallow-ocean study in western Taiwan, several areas are studied: pass 164 in the Taiwan Straits is divided into two parts by the boundary of 24.75 N; pass 164 in the western Pacific Ocean bounded by latitude 20 N and 23 N; pass 051 bounded by latitude 20 N and 28 N is separated by the land of Taiwan into the south and the north of pass 051, and the south of pass 051 is divided into two parts by ocean depth of 200 m. The result showed that T/P and JASON-2 raw data can be significantly improved by the waveform retracking with the highest improvement percentage at 80% in shallow oceans and 45% in deep oceans, and the optimal retracking algorithm highly depends on the characteristics of the study area.
Tuku and Yuanchang of Taiwan are chosen as the study areas for the research of rice fields with large subsidence due to water pumping. In this analysis, the modified 10% threshold retracker could restrain the land waveform noise more effectively than others. The time series of height changes in Tuku and Yuanchang showed large negative trends, which conform to land subsidence resulting from groundwater overdraft in the study area. Furthermore, retracked altimetry data are relevant to groundwater with correlation coefficients of 0.71 and 0.43 in Tuku and Yuanchang, respectively, but irrelevant to rain fall and river gauge records.
論文目次 中文摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.3 論文架構 5
第二章 測高衛星基本介紹及測量原理 6
2.1 衛星測高發展概況 6
2.2 測高原理簡介 8
2.3 衛星測高誤差分析 10
2.4 測高衛星介紹 16
2.4.1 TOPEX/POSEIDON衛星 16
2.4.2 JASON-2衛星 20
2.5 測高資料 22
2.5.1 T/P海洋測高資料及改正 23
2.5.2 JASON-2海洋測高資料及改正 25
2.5.3 T/P陸地測高資料及改正 26
2.5.4 JASON-2陸地測高資料及改正 28
第三章 波形與波形重定 29
3.1 波形(waveform) 29
3.2 波形重定 32
3.2.1 OCOG演算法(Offset Center of Gravity Retracker) 33
3.2.2 門檻值演算法(Threshold Retracker) 34
3.2.3 改良型門檻值演算法(Modified Threshold Retracker) 35
3.2.4 Ice retracker 38
第四章 衛星測高監測台灣河川水位變動探討 39
4.1 研究區域範圍資訊 39
4.2 成果分析 42
第五章 衛星測高波形重定於台灣海峽之精度評估 51
5.1 衛星資料處理流程 51
5.2 精度評估 55
5.3 成果分析 65
第六章 衛星測高於內陸農田水文研究 72
6.1 研究區域與水文資訊 72
6.2 研究流程 75
6.3 波形分析與演算法選定 78
6.4 成果分析 82
6.4.1 地形梯度改正分析 82
6.4.2 測高資料成果分析 84
6.4.3 各類水文資料成果分析 88
6.4.4 測高資料與水文資料關係探討 91
第七章 結論與建議 94
參考文獻 97

參考文獻 行政院農業委員會林務局農林航空測量所,http://www.afasi.gov.tw/。
呂誌強,DEM解析度對大地起伏模式之影響,碩士論文,國立交通大學土木工程研究所,台灣新竹,2004。
經濟部水利署水文水資料資料管理供應系統,http://gweb.wra.gov.tw/wrweb/。
經濟部水利署地層下陷防治資訊網,http://www.water.tku.edu.tw/sub91/。
翟國君、黃漠濤、謝錫君與歐陽永忠,衛星測高數據處理的理論與方法,測繪出版社,北京,2004。
鐘郁翔,利用衛星測高波形重定技術進行雲林縣地層下陷評估,碩士論文,國立中正大學應用地球物理與環境科學研究所,台灣嘉義,2010。
Alsdorf, D., C. Birkett, T. Dunne, J. Melack, and L. Hess., Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry, Geophys. Res. Lett., 28, 2671-26742, 2001.
AVISO, http://www.aviso.oceanobs.com/en/, Cnes, CLS.
AVISO/Altimetry, AVISO User Handbook for Merged TOPEX/POSEIDON product, AVI-NT-02-101, Edition 3.0, 1996.
Bamber, J. L., Ice sheet altimeter processing scheme, Int. J. Remote Sens., 15, 925-938, 1994.
Bao, L., Y. Lu, and Y. Wang, Improved retracking algorithm for oceanic altimeter waveforms, Prog. Nat. Sci., 19, 195-203, 2009.
Berry, P.A.M., J.D. Garlick, J.A. Freeman, and E.L. Mathers, Global inland water monitoring from multi-mission altimetry, Geophys. Res. Lett., 32, L16401, doi:10.1029/2005GL022814, 2005.
Birkett, C.M., Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands, Water Resour. Res., 34, 1223-1239, 1998.
Birkett, C.M., L.A.K. Mertes, T. Dunne, M.H. Costa, and M.J. Jasinski, Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry, J. Geophys. Res., 107, doi:10.1029/2001JD000609, 2002.
Brooks, R. L., D.W. Lockwood, and J.E. Lee, Land effects on TOPEX radar altimeter measurements on Pacific Rim coastal zones, NASA WFF Publ. (available at http://topex.wff.nasa.gov/documents/7.html), 1997.
Brown, G.S., The average impulse response of a rough surface and its applications, IEEE Trans. Antennas Propag., 25, 67-74, 1977.
Cabanes, C., A. Cazenave, and C. Le Provost, Sea level rise during the 1990s and past 40 years: New insight from satellite and in situ Observations, Science, 294, 840–842, 2001.
Cartwright, D.E., and R.J. Tayler, New computations of the tide-generating potential, Geophys. J. R. Astr. Soc., 23, 45-74, 1971.
Cartwright, D.E., and A.C. Edden, Corrected tables of tidal harmonics, Geophys. J. R. Astr. Soc., 33, 253-264, 1973.
Chelton, D.B., The sea state bias in altimeter estimates of sea level from collinear analysis of TOPEX data, J. Geophys. Res., 99, 24995-25008, 1994.
Chelton, D.B., J.C. Ries, B.J. Haines, L.-L. Fu, and P.S. Callahan, Satellite altimetry. In:L.-L. Fu and A. Cazenave (editors), Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, Elsevier, New York, 1-132, 2001.
Chovitz, B.H., Geodetic results from Seasat, Marine Geodesy 7, 315-330, 1983.
Church, J.A., N.J. White, R. Coleman, K. Lambeck, and J.X. Mitrovica, Estimates of the regional distribution of sea-level rise over the 1950 to 2000 period, J. Clim., 17, 2609–2625, 2004.
Davis, C.H., A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeter, IEEE Trans. Geosci. Remote Sensing, 35, 974-979, 1997.
Deng, X.L., Improvement of geodetic parameter estimation in coastal regions from satellite radar altimetry, Ph.D. Dissertation, Curtin University of Technology, Australia, 2002.
Deng, X., and W.E. Featherstone, A coastal retracking system for satellite radar altimeter waveforms: Application to ERS-2 around Australia, J. Geophys. Res., 111, doi: 10.1029/2005JC00.039, 2006.
Douglas, B.C., R.W. Agreen, and D.T. Sanwell, Observing global ocean irculation with Seasat altimeter data, Marine Geodesy, 8:67-93, 1984.
Egbert, G.D., A.F. Bennett , and M.G.G. Foreman, Topex/Poseidon tides estimated using a global inverse model, J. Geophys. Res., C12, 24821-24852, 1994.
Fedor, L.S., and G.S.Brown , Waveheight and wind speed measurements from the Seasat radar altimeter, J. Geophys. Res., C5, 3254-3260, 1982.
Frappart, F., S. Calmant, M. Cauhope, F. Seyler, and A. Cazenave, Preliminary results of Envisat RA-2 derived water levels validation over the Amazon basin, Remote Sens. Environ., 100, 252-264, 2006.
Gaspar, P., F. Ogor, P.Y. Le Traon, and O.Z. Zanife, Estimating the sea state bias for the TOPEX and POSEIDON altimeters from crossover differences, J. Geophys. Res.,99, C12:24981-2494, 1994.
Guman, M.D., Determination of global mean sea level variations using multi-satellite altimetry, Ph.D. Dissertation, University of Texas at Austin, Texas, USA, 1997.
Hayne, G.S., D.W. Hancock III, and C.L. Purdy, The corrections for significant wave height and attitude effects in the TOPEX radar altimeter, J. Geophys. Res., 99, 24941-24955, 1994.
Hwang, C., and B. Parsons, Gravity anomalies derived from Seasat, Geosat, ERS-1 and Topex/Poseidon altimeter and ship gravity: a case study over the Reykjanes Ridge, Geophys. J. Int., 122, 551-568, 1995.
Hwang, C., E.-C. Kao, and B. Parsons, Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data, Geophys. J. Int., 34, 449-460, 1998.
Hwang, C., M.F. Peng, J.S. Ning, J. Luo, and C.H. Sui, Lake level variations in China from TOPEX/Poseidon altimetry: data quality assessment and links to precipitation and ENSO, Geophys. J. Int., 161, 1-11, 2005.
Hwang, C., J. Guo, X. Deng, H.Y. Hsu, and Y. Liu, Coastal gravity anomalies from retracked Geosat/GM altimetry: improvement, limitation and the role of airborne gravity data, J. Geodesy, 80, 204-216, 2006.
Ibaraki, M., H. Lee, and C.K. Shum, Study of wetland flow dynamics using satellite altimetry, International Workshop on Coast and Land Applications of Satellite Altimetry, Beijing, China, 21-23 July, 2006.
Kaula, W.M., The Terrestrial Environment : Solid Earth and Ocean Physics., Application of Space and Astronomic Techniques, Report of a Study at Williamstown, Massachusetts, August 1969, to the National Aeronautics and Space Administration, Cambridge, Massachusette , 1969.
Kuo, C.Y., C.K. Shum, J.Y. Guo, Y. Yi, A. Braun, I. Fukumori, K. Matsumoto, T. Sato, and K. Shibuya, Southern Ocean Mass Variation Studies Using GRACE and Satellite Altimetry, Earth, Planets and Space, 60, 477-485, 2008.
Lee, H.K., Radar Altimetry Methods for Solid Earth Geodynamics Studies, Ph.D. Dissertation, The Ohio State University, Columbus, Ohio, USA, 2008.
Lee, H., C.K. Shum, Y. Yi, A. Braun, and C.Y. Kuo, Laurentia crustal motion observed using TOPEX/POSEIDON radar altimetry, J. Geodyn., 46:182-193, 2008.
Lee, H., C.K. Shum, Y. Yi, M. Ibaraki, J.-W. Kim, A. Braun, C.Y. Kuo, and Z. Lu, Louisiana wetland water level monitoring using retracked TOPEX/POSEIDON altimetry, Marine Geodesy, 32:284-302, 2009.
Maheu, C., A. Cazenave, and C.R. Mechoso, Water level fluctuations in the Plata Basin (South America) from TOPEX/POSEIDON satellite altimetry, Geophys. Res. Lett., 30, doi:10.1029/2002GL016033, 2006.
Martin, T.V., H.J. Zwally, A.C. Brenner, and R.A. Bindschadler, Analysis and Retracking of Continental Ice Sheet Radar Altimeter Waveforms, J. Geophys. Res., 88, 1608-1616, 1983.
Matsumoto, K., T. Takanezawa, and M. Ooe, Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan, J. Oceanography, 56, 567-581, 2000.
Monka, F.M., Zur Aufbereitung und Auswertung von GEO-3 Satellite radar altimeter messungen, Wiss.Arb.Univ. Hannover, Nr. 134, 1984.
Moritz, H., and I.I. Mu ̈ller, Earth Rotation theory and Observation, Ungar, New York, 1987.
NASA,http://www.nasa.gov/。
OSTM/Jason-2 Products Handbook, JPL, OSTM-29-1237, 2009.
Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor, An earth gravitational model to degree 2160: EGM2008. EGU-2008, Vienna, Austria, April, 2008.
Rapp, R.H., Y.M. Wang and N.K. Pavlis, The Ohio State 1991 Geopotential and Sea Surface Topography Harmonic Coefficient Models, OSU. Rep., 410, 1991.
Schwiderski, H., Combined hydrodynamical and empirical modeling of ocean tides, In: Seeber, Apel (eds.), Geodetic Feature of the Ocean Surface and their Implications, 215-229, D. Reidel, Dordrecht, 1984.
Seeber, G., Satellite Geodesy : Foundations, Methods, and Applications, Water de Gruyter, Berlin, 1993.
Smith, S.L., G.B. West, and C.W. Malyevac, Determination of ocean geodetic data from GEOSAT, Johns Hopkins Applied Physics Laboratory Technical Digest, 8, 2, 197-205, Laurel Maryland, 1987.
Smith, W. H. F., and D. T. Sandwell, Bathymetric prediction from dence satellite altimetry and sparse shipboard bathymetry, J. Geophys. Res., B11, 21803-21824, 1994.
Sramek, S., Seamount detection and size estimation using filtered Geosae altimetry data, Marine Geodesy,15:151~163, 1992.
Torge, W., Geodesy, W. de Gruyter, Berlin, 1991.
Wagner, C.A., How well do we know the deep ocean tides An intercomparision of altimeter, hydrodynamic and gauge data, Marine Geodesy 16, 118-140, 1991.
Wahr, J.W., Deformation of the Earth induced by polar motion, J. Geophys. Res., 90, 9363-9368, 1985.
Wingham, D.J., A.J. Ridout, R. Scharroo, R.J. Arthern, and C.K. Shum, Antarctic elevation change from 1992 to 1996, Science, 282, 456-458, 1998.
Yaplee, B.S., A. Shapiro, D.L. Hammond., B.D. Au, and E.A. Uliana, Nanosecond radar observation of the ocean surface from a stable platform, IEEE Trans. Geosci. Electron., GE-9, 170-174, 1971.
Zhang, M., Satellite Radar Altimetry Methods for Inland Hydrologic Studies, Ph.D. Dissertation, The Ohio State University, Columbus, Ohio, USA, 2009.
Zwally, H.J., A.C. Brenner, J.A. Major, R.A. Bindscadler, and J. Marsh, Growth of Greenland Ice Sheet: Measurement, Science, 246, 1587-1589, 1989.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw