進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1108201013275400
論文名稱(中文) 自組裝單分子層修飾奈米金表面以貼附腺病毒並應用於增顯其外層蛋白質結構之拉曼信號
論文名稱(英文) Self-Assembled Monolayers Modified Au Nanoparticle Surfaces to Attach with Adenovirus and Apply for the Enhancement of Raman Signals from Its Protein Shell Structure
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 林裕哲
研究生(英文) Yu-Che Lin
學號 n5697117
學位類別 碩士
語文別 中文
論文頁數 64頁
口試委員 指導教授-廖峻德
口試委員-蕭璦莉
口試委員-林弘萍
口試委員-楊子萱
中文關鍵字 表面增顯拉曼散射  奈米金粒子  腺病毒  自組裝單分子層 
英文關鍵字 Surface enhanced Raman scattering (SERS)  Au nanoparticle (AuNP)  adenovirus  self-assembled monolayers (SAMs) 
學科別分類
中文摘要 在臨床診斷領域上,病毒即時分析是生物醫學上重要的研究課題之一,近年來,利用光譜儀器對病毒作分析判斷越來越受到科學家重視,而表面增顯拉曼散射因為具有精確靈敏和快速檢測優點,成為具有潛力的病毒檢測儀器;本研究主要在製作經自組裝單分子層(SAMs)修飾的奈米金粒子,配合媒合劑的使用,使奈米金粒子以化學鍵結的方式捕捉腺病毒,進而達到拉曼增顯偵測病毒的目的。
本實驗先利用金平面探討不同鏈長SAMs化學接枝腺病毒的成效,將11-Mercapto-undecanoic acid (MUA),6-Mercapto-hexanoic acid (MHA),以及3-Mercapto-propionic acid (MPA)三種具有相同尾端官能基,不同鏈長的SAMs固定於金表面,隨後進行腺病毒的固定,藉由以光電子能譜儀(X-ray photoelectron spectrometer, XPS)能譜變化,探討腺病毒結合於金面之捕捉成效。接著合成奈米金粒子,讓金粒子與腺病毒產生鍵結,以顯微拉曼(micro-Raman)針對不同碳鏈長度的變化對拉曼圖譜研究分析,並判斷腺病毒之拉曼特性圖譜;之後再製備不同粒徑尺寸(15 nm、30 nm 和60 nm)的奈米金粒子,利用光譜儀器量測奈米金的吸收峰值,和電子顯微鏡分析奈米金和病毒的形貌大小,以及拉曼評估金奈米尺寸對於病毒圖譜的影響。
實驗結果,由XPS數據顯示MUA、MHA和MPA可藉媒合劑的輔助,將腺病毒固定於金表面,而腺病毒固定量以MHA為接枝時的情況最佳;而以奈米金捕捉腺病毒,可以量得病毒的特徵峰值於修飾性奈米金的拉曼圖譜,至於影響增顯強度的因子可推估為接枝鏈長變化讓奈米金和病毒之間距離改變,以及SAMs奈米金排列的共同效應;而尺寸方面,則因粒徑尺寸為30 nm的金粒子可以引發共振拉曼現象,故可達成最佳的拉曼增顯。
英文摘要 Virus analysis is one of important issues in the biomedical field. In recent years optical instruments are widely applied to viral diagnosis. Surface enhanced Raman scattering (SERS) was assisted development due to the explosive improvement of nanotechnology and nanoscience. In this study, self-assembled monolayers (SAMs) were used to modify Au nanoparticles (AuNP). In the meantime, coupling agents were used as the “bridge” between AuNP and adenovirus through an amide bond. Finally, SERS was employed a tool to detect adenovirus.
In this study, we utilized 11-Mercapto-undecanoic acid (MUA), 6-Mercapto-hexanoic acid (MHA), and 3-Mercapto-propionic acid (MPA), which have the same tailed-functional group but different alkyl chain lengths, to modify gold substrates and immobilize adenovirus through an amide bond. Using X-ray photoelectron spectrometer (XPS), we aimed to assess the effectiveness of adenovirus binding on the Au substrate. Furthermore, AuNP were fabricated and bound with adenovirus. Micro-Raman was used to determine the effect of the distance between targets and NP on SERS. To investigate the size effect on SERS, AuNP with different sizes (15 nm, 30 nm, and 60 nm) were produced and assessed by Micro-Raman.
Based on these results, adenovirus can be immobilized on the Au surface through MUA, MHA and MPA. The specific peaks of proteins on the surface of adenovirus can be distinguished. Apart from the distance between AuNP and virus, SAMs on the Au surface also affected the amount of the attached adenovirus. Regarding size factor, 30 nm AuNP could induce surface enhanced resonance Raman (SERRS).
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
第一章 緒論 1
1.1 研究背景 1
1.2 實驗動機 2
1.3 文獻回顧 3
1.3.1 病毒接枝於奈米粒子或修飾性金基材 3
1.3.2 金屬粒子在SERS上的生醫及光學應用 4
1.3.3 環境參數改變對SERS效應評估 8
1.3.4 SERS應用於病毒檢測上 10
1.4 研究目的 12
第二章 理論基礎 13
2.1拉曼散射光譜 13
2.2表面增顯拉曼散射 15
2.3 電磁效應 17
2.3.1電磁距離效應 17
2.3.2 熱區效應(hot spot effect) 18
2.4 化學效應 18
2.5 金屬奈米粒子 19
2.5.1 金屬奈米粒子之物化特性 19
2.5.2 金屬奈米粒子製備 20
2.5.3 金屬奈米粒子之光學和生醫性質 20
第三章 實驗材料與方法 23
3.1 實驗設計與流程 23
3.2 實驗材料及方法 24
3.2.1平面金與腺病毒接合製備 24
3.2.2奈米金的製備 24
3.2.3 以單分子層修飾奈米金 25
3.2.4 奈米金與病毒的接合 26
3.2.5 EDC/NHS 醯胺鍵結 (amide bond)機制 27
3.2.6 利用修飾之奈米金結合腺病毒 28
3.3 分析儀器 29
3.3.1 顯微拉曼光譜儀(Microscopes Raman Spectrometer) 29
3.3.2 相關實驗與儀器說明 31
第四章 結果與討論 32
4.1基礎研究 32
4.1.1 以平面金驗證將單分子層接枝於金表面之可行性 32
4.2 以不同鏈長單分子層(SAMs)修飾金對於表面增顯拉曼效果之影響 37
4.2.1 平面金修飾病毒之拉曼增顯效應 37
4.2.2 電子顯微鏡觀察奈米金顆粒之尺寸 38
4.2.3 以不同鏈長對表面增顯拉曼之影響 40
4.3 探討不同尺寸奈米金對於表面增顯拉曼效果之影響 46
4.3.1 TEM鑑定奈米金之形貌 47
4.3.2 UV-vis.判別奈米金之吸收光譜 47
4.3.3表面增顯拉曼之尺寸大小評估 51
第五章 結論 54
參考文獻 55
附錄 62
參考文獻 [1] M. K. O'Shea, M. A. K. Ryan, A. W. Hawksworth, B. J. Alsip and G. C. Gray, "Symptomatic Respiratory Syncytial Virus Infection in Previously Healthy Young Adults Living in a Crowded Military Environment", Clinical Infectious Diseases, Vol. 41, 311-317, 2005.
[2] J. Barenfanger, C. Drake, N. Leon, T. Mueller and T. Troutt, "Clinical and Financial Benefits of Rapid Detection of Respiratory Viruses: an Outcomes Study", J. Clin. Microbiol., Vol. 38, 2824-2828, 2000.
[3] B. Pei-Di, H. Tian-Quan, L. Xin-Ming and W. Tie-Qiao, "Surface-enhanced Raman spectroscopy of insect nuclear polyhedrosis virus", Journal of Raman Spectroscopy, Vol. 32, 227-230, 2001.
[4] H. H. Judith, W. A. Stephan, K. Michael and P.-K. Therese, "Improved detection of respiratory syncytial virus in nasal aspirates by seminested RT-PCR", Journal of Medical Virology, Vol. 53, 366-371, 1997.
[5] S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy and R. A. Tripp, "Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate", Nano letters, Vol. 6, 2630-2636, 2006.
[6] Y. Liang, J.-L. Gong, Y. Huang, Y. Zheng, J.-H. Jiang, G.-L. Shen and R.-Q. Yu, "Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools", Talanta, Vol. 72, 443-449, 2007.
[7] C. Dana, D.-G. Tanja, B. Christian, L. Michael, M. Robert, N. Dieter, D. Volker and P. Jgen, "Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus", Journal of Raman Spectroscopy, Vol. 40, 240-243, 2009.
[8] C. L. Haynes, A. D. McFarland and R. P. V. Duyne, "Surface-Enhanced Raman Spectroscopy", Analytical chemistry, Vol. 77, 338 A-346 A, 2005.
[9] M. Martin, "Surface-enhanced Raman spectroscopy: a brief retrospective", Journal of Raman Spectroscopy, Vol. 36, 485-496, 2005.
[10] M. Moskovits, K. Kneipp and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications, p2-40, 2006.
[11] 蔡朝淵, "奈米金在奈米生物技術與奈米醫學上的應用", 國立成功大學基礎醫學研究所博士論文, 2007
[12] M. Lewin, N. Carlesso, C.-H. Tung, X.-W. Tang, D. Cory, D. T. Scadden and R. Weissleder, "Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells", Nat Biotech, Vol. 18, 410-414, 2000.
[13] M. Everts, V. Saini, J. L. Leddon, R. J. Kok, M. Stoff-Khalili, M. A. Preuss, C. L. Millican, G. Perkins, J. M. Brown, H. Bagaria, D. E. Nikles, D. T. Johnson, V. P. Zharov and D. T. Curiel, "Covalently Linked Au Nanoparticles to a Viral Vector: Potential for Combined Photothermal and Gene Cancer Therapy", Nano letters, Vol. 6, 587-591, 2006.
[14] M. H. Harpster, H. Zhang, A. K. Sankara-Warrier, B. H. Ray, T. R. Ward, J. P. Kollmar, K. T. Carron, J. O. Mecham, R. C. Corcoran, W. C. Wilson and P. A. Johnson, "SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label", Biosensors and Bioelectronics, Vol. 25, 674-681, 2009.
[15] E. Podstawka, Y. Ozaki and L. M. Proniewicz, "Part I: Surface-Enhanced Raman Spectroscopy Investigation of Amino Acids and Their Homodipeptides Adsorbed on Colloidal Silver", Applied Spectroscopy, Vol. 58, 570-580, 2004.
[16] E. Podstawka, Y. Ozaki and L. M. Proniewicz, "Part II: Surface-Enhanced Raman Spectroscopy Investigation of Methionine Containing Heterodipeptides Adsorbed on Colloidal Silver", Applied Spectroscopy, Vol. 58, 581-590, 2004.
[17] E. Podstawka, Y. Ozaki and L. M. Proniewicz, "Part III: Surface-Enhanced Raman Scattering of Amino Acids and Their Homodipeptide Monolayers Deposited onto Colloidal Gold Surface", Applied Spectroscopy, Vol. 59, 1516-1526, 2005.
[18] L. Seballos, N. Richards, D. J. Stevens, M. Patel, L. Kapitzky, S. Lokey, G. Millhauser and J. Z. Zhang, "Competitive binding effects on surface-enhanced Raman scattering of peptide molecules", Chemical Physics Letters, Vol. 447, 335-339, 2007.
[19] S. Feng, J. Lin, M. Cheng, Y.-Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen and H. Zeng, "Gold Nanoparticle Based Surface-Enhanced Raman Scattering Spectroscopy of Cancerous and Normal Nasopharyngeal Tissues Under Near-Infrared Laser Excitation", Appl. Spectrosc., Vol. 63, 1089-1094, 2009.
[20] N. L. Rosi and C. A. Mirkin, "Nanostructures in biodiagnostics", Chemical reviews, Vol. 105, 1547-1562, 2005.
[21] C.-C. Lin, Y.-M. Yang, Y.-F. Chen, T.-S. Yang and H.-C. Chang, "A new protein A assay based on Raman reporter labeled immunogold nanoparticles", Biosensors and Bioelectronics, Vol. 24, 178-183, 2008.
[22] A. S. Blum, C. M. Soto, C. D. Wilson, J. D. Cole, M. Kim, B. Gnade, A. Chatterji, W. F. Ochoa, T. Lin, J. E. Johnson and B. R. Ratna, "Cowpea Mosaic Virus as a Scaffold for 3-D Patterning of Gold Nanoparticles", Nano letters, Vol. 4, 867-870, 2004.
[23] C. Radloff, R. A. Vaia, J. Brunton, G. T. Bouwer and V. K. Ward, "Metal Nanoshell Assembly on a Virus Bioscaffold", Nano letters, Vol. 5, 1187-1191, 2005.
[24] S. Vaibhav, M. Dmitri, M. Sergei, P. Alex, P. Guy, E. Mark, T. Victoria, W. Hongju, P. Larisa, B. Anton, C. David and E. Maaike, "An Adenoviral Platform for Selective Self-Assembly and Targeted Delivery of Nanoparticles", Small, Vol. 4, 262-269, 2008.
[25] C. L. Cheung, J. A. Camarero, B. W. Woods, T. Lin, J. E. Johnson and J. J. De Yoreo, "Fabrication of Assembled Virus Nanostructures on Templates of Chemoselective Linkers Formed by Scanning Probe Nanolithography", Journal of the American Chemical Society, Vol. 125, 6848-6849, 2003.
[26] N. G. Portney, R. J. Tseng, G. Destito, E. Strable, Y. Yang, M. Manchester, M. G. Finn and M. Ozkan, "Microscale memory characteristics of virus-quantum dot hybrids", Applied Physics Letters, Vol. 90, 214104-3, 2007.
[27] Y. C. Cao, R. Jin and C. A. Mirkin, "Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection", Science, Vol. 297, 1536-1540, 2002.
[28] A. Bonifacio, L. van der Sneppen, C. Gooijer and G. van der Zwan, "Citrate-Reduced Silver Hydrosol Modified with w-Mercaptoalkanoic Acids Self-Assembled Monolayers as a Substrate for Surface-Enhanced Resonance Raman Scattering. A Study with Cytochrome c", Langmuir, Vol. 20, 5858-5864, 2004.
[29] K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama and N. Ogawa, "Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy", Analytical and Bioanalytical Chemistry, Vol. 386, 639-644, 2006.
[30] W. Doering, M. Piotti, M. Natan and R. Freeman, "SERS as a Foundation for Nanoscale, Optically Detected Biological Labels", Advanced Materials, Vol. 19, 3100-3108, 2007.
[31] H. Ping-Ji, C. Lai-Kwan, Y. Tzyy-Schiuan, T. Li-Lin and L. Tai-Tsung, "Nanoaggregate-Embedded Beads as Novel Raman Labels for Biodetection", Advanced Functional Materials, Vol. 19, 242-248, 2009.
[32] E. Ito, K. Konno, J. Noh, K. Kanai, Y. Ouchi, K. Seki and M. Hara, "Chain length dependence of adsorption structure of COOH-terminated alkanethiol SAMs on Au(111)", Applied Surface Science, Vol. 244, 584-587, 2005.
[33] C. S. Levin, B. G. Janesko, R. Bardhan, G. E. Scuseria, J. D. Hartgerink and N. J. Halas, "Chain-Length-Dependent Vibrational Resonances in Alkanethiol Self-Assembled Monolayers Observed on Plasmonic Nanoparticle Substrates", Nano letters, Vol. 6, 2617-2621, 2006.
[34] K. Kwon, K. Y. Lee, M. Kim, Y. W. Lee, J. Heo, S. J. Ahn and S. W. Han, "High-yield synthesis of monodisperse polyhedral gold nanoparticles with controllable size and their surface-enhanced Raman scattering activity", Chemical Physics Letters, Vol. 432, 209-212, 2006.
[35] J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill and J. F. Ridpath, "Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay", Analytical chemistry, Vol. 77, 6147-6154, 2005.
[36] S. Shanmukh, L. Jones, Y. P. Zhao, J. Driskell, R. Tripp and R. Dluhy, "Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques", Analytical and Bioanalytical Chemistry, Vol. 390, 1551-1555, 2008.
[37] R. A. Tripp, R. A. Dluhy and Y. Zhao, "Novel nanostructures for SERS biosensing", Nano Today, Vol. 3, 31-37, 2008.
[38] M. C. Demirel, P. Kao, N. Malvadkar, H. Wang, X. Gong, M. Poss and D. L. Allara, "Bio-organism sensing via surface enhanced Raman spectroscopy on controlled metal/polymer nanostructured substrates", Biointerphases, Vol. 4, 35-41, 2009.
[39] 李冠卿, "表面強化拉曼散射", 物理雙月刊, Vol. 5, 185, 1983.
[40] 謝雲生, "雷射拉曼光譜簡介", 物理雙月刊, Vol. 7, 25, 1985.
[41] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feld, "Ultrasensitive Chemical Analysis by Raman Spectroscopy", Chemical reviews, Vol. 99, 2957-2976, 1999.
[42] K. Katrin, K. Harald, I. Irving, R. D. Ramachandra and S. F. Michael, "Surface-enhanced Raman scattering and biophysics", Journal of Physics: Condensed Matter, Vol. 14, R597-R624, 2002.
[43] A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering", Chemical Society Reviews, Vol. 27, 241-250, 1998.
[44] S. Vaibhav, P. Z. Vladimir, S. B. Christopher, E. N. David, T. J. Duane and E. Maaike, "Combination of viral biology and nanotechnology: new applications in nanomedicine", Nanomedicine : the official journal of the American Academy of Nanomedicine, Vol. 2, 200-206, 2006.
[45] J. Bong-Hyun, N. Mi Suk, K. Jaeyun, K. Gunsung, K. Homan, K. Min-Soo, S. Young-Tae, B. Jongho, K. Jong-Ho, P. Juyoung, K. Seongyong, K. Yong-Kweon, H. Taeghwan, C. Myung-Haing, J. Dae Hong and L. Yoon-Sik, "Multifunctional Silver-Embedded Magnetic Nanoparticles as SERS Nanoprobes and Their Applications", Small, Vol. 6, 119-125, 2010.
[46] 郭清癸, 黃俊傑 and 牟中原, "金屬奈米粒子的製造 ", 物理雙月刊, Vol. 23, 614-624, 2001.
[47] 工研院化工所, "奈米粒子材料的觸媒性質", 化工資訊, Vol. 13, 1999.
[48] S. Eustis and M. A. El-Sayed, "Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes", Chemical Society Reviews, Vol. 35, 209-217, 2006.
[49] P. K. Jain, X. Huang, I. H. El-Sayed and M. A. El-Sayed, "Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine", Accounts of Chemical Research, Vol. 41, 1578-1586, 2008.
[50] S. K. Ghosh, A. Pal, S. Kundu, S. Nath and T. Pal, "Fluorescence quenching of 1-methylaminopyrene near gold nanoparticles: size regime dependence of the small metallic particles", Chemical Physics Letters, Vol. 395, 366-372, 2004.
[51] J. J. Rux and R. M. Burnett, "Adenovirus Structure", Human Gene Therapy, Vol. 15, 1167-1176, 2004.
[52] 張信知, 病毒世界-現代分子病毒學大綱, 1999.
[53] K. C. Bantz and C. L. Haynes, "Surface-enhanced Raman scattering detection and discrimination of polychlorinated biphenyls", Vibrational Spectroscopy, Vol. 50, 29-35, 2009.
[54] 許景翔, "金奈米粒子合成及表面化學改質與其應用於DNA 分子雜交動力學之探討", 國立中央大學化學工程與材料工程研究所碩士論文, 2003
[55] Z. Movasaghi, S. Rehman and I. U. Rehman, "Raman Spectroscopy of Biological Tissues", Applied Spectroscopy Reviews, Vol. 42, 493 - 541, 2007.
[56] A. Gopinath, S. V. Boriskina, B. M. Reinhard and L. Dal Negro, "Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS)", Opt. Express, Vol. 17, 3741-3753, 2009.
[57] K. Chan Kyu and et al., "Gold-nanoparticle-based miniaturized laser-induced fluorescence probe for specific DNA hybridization detection: studies on size-dependent optical properties", Nanotechnology, Vol. 17, 3085, 2006.
[58] J. D. Driskell, R. J. Lipert and M. D. Porter, "Labeled Gold Nanoparticles Immobilized at Smooth Metallic Substrates:Systematic Investigation of Surface Plasmon Resonance and Surface-Enhanced Raman Scattering", The Journal of Physical Chemistry B, Vol. 110, 17444-17451, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw