進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1108201011131600
論文名稱(中文) 具準確自感測技術之形狀記憶合金致動器控制
論文名稱(英文) An Accurate Self-Sensing Technique for Control of Shape Memory Alloy Actuators
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 范振賢
研究生(英文) Chen-Hsien Fan
學號 n1697448
學位類別 碩士
語文別 中文
論文頁數 89頁
口試委員 口試委員-張仁宗
口試委員-田思齊
指導教授-藍兆杰
中文關鍵字 形狀記憶合金致動器  自感測  電阻變化  模糊PID控制器  三爪式撓性夾具 
英文關鍵字 Shape memory alloy actuator  self-sensing  resistance  fuzzy PID controller  tri-fingered compliant gripper 
學科別分類
中文摘要 本論文提出一套準確的形狀記憶合金(SMA)致動器自感測模型及控制系統,以自感測模型取代傳統感測器回授訊號,並以模糊PID控制系統修正驅動電壓達到準確的位置控制。SMA致動器擁有機構簡單、高能量密度及容易微型化的優點,十分適合應用於微型裝置,但加裝額外的感測器,將增加整體尺寸,因此本論文發展SMA的自感測技術,令SMA同時扮演致動器與感測器的角色。首先討論SMA致動器的電阻與收縮應變之間的關係,以電阻變化為控制變數,估算SMA的收縮應變,透過多項式擬合電阻與應變之間的特性曲線,可快速得到準確且簡單的自感測模型。藉由調整SMA致動器的預張力,可有效減小此模型因遲滯效應所產生的應變間隙,而相較於以輸入電壓或通過電流為控制變數的自感測模型,以電阻變化為控制變數的自感測模型受到環境溫度的影響較低,亦有良好的重複性。為了避免環境干擾造成控制誤差,本論文使用模糊PID控制器取代傳統PID控制器,實現自調整參數技術,進而控制SMA致動器快速達到準確的變形。為驗證本自感測技術,本論文設計非線性機構及三爪式撓性夾具,並以上述二種機構搭配自感測模型進行測試與實驗。最後,期望本論文設計的自感測模型及控制系統能應用於各種機器人及微操作領域中。
英文摘要 This thesis presents an accurate self-sensing model and control system of shape memory alloy (SMA) actuators. The self-sensing model is developed to replace sensor electronics for SMA actuators. A fuzzy PID control system is used to tune the driving voltage for accurate SMA position control. An SMA actuator is a simple mechanism that exhibits high energy density. It is easy to be miniaturized. However, any additional sensor electronics will significantly increase the overall device dimension and impair the advantages of SMA actuators. For the reason, this thesis develops a self-sensing technique that makes SMA play both the roles of an electronic actuator and sensor. First, this thesis studies the relationship between SMA electric resistance and strain. An accurate and simple transformation model is constructed by using polynomial functions. Adjusting the pretension force of SMA actuators can sufficiently decrease the strain gap of this model caused by the hysteresis effect. The effect of ambient temperature on the self-sensing model is minimal. Hence the self-sensing model presents good repeatability. A fuzzy PID controller is used to replace traditional PID controllers for accurate and fast position control. To validate the present technique, a nonlinear flexure and a tri-fingered compliant gripper are illustrated to show how the self-sensing model can be successfully implemented to various contexts. Finally, this thesis expects that the self-sensing model and control system can be utilized in the field of robotics and micro manipulation.
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XIV
第一章 前言 1
1.1 文獻回顧 1
1.1.1 形狀記憶合金致動器 1
1.1.2 自感測技術 5
1.2 研究動機與目的 8
1.3 本文架構 8
第二章 形狀記憶合金致動器自感測特性 9
2.1 前言 9
2.2 形狀記憶合金致動器的材料特性 10
2.2.1 材料特性 10
2.2.2 數學模型 13
2.3 形狀記憶合金致動器的電阻變化特性 16
2.3.1 實驗設置 16
2.3.2 電阻變化特性 18
2.3.3 輸入電壓的振幅與頻率 19
2.4 自感測模型 22
2.4.1 多項式自感測模型 22
2.4.2 預張力對自感測模型的影響 26
2.4.3 剛性對自感測模型的影響 31
2.4.4 工作溫度對自感測模型的影響 31
2.4.5 自感測模型的重複性 32
2.5 結論 34
第三章 自感測控制系統設計與實做 37
3.1 前言 37
3.2 模糊PID控制器 38
3.3 自感測控制系統 45
3.4 控制實驗 47
3.4.1 多步階控制 47
3.4.2 追蹤控制 51
3.5 結論 52
第四章 自感測控制系統應用於微型夾具 53
4.1 前言 53
4.2 剛性非線性受控機構 54
4.3 三爪式撓性夾具 58
4.4 控制實驗 67
4.4.1 預拉裝置 67
4.4.2 單一撓性手指控制 69
4.4.3 三爪式撓性夾具控制 70
4.5 夾持力與機械利益 75
4.6 結論 76
第五章 結論與未來工作 77
5.1 結論 77
5.2 未來工作 78
參考文獻 81
自述 88
著作權 89

參考文獻 [1] A. Falvo, 2007, “Thermo Mechanical Characterization of Nickel-Titanium Shape Memory Alloys,” PhD Thesis, Department of Mechanical Engineering, Universita Della Calabria, Italy.
[2] S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, D. Chorvat. Jr., D. Chorvat, and A. M. Zheltikov, 2003, “Quantum-Controlled Color: Chirp- and Polarization-Sensitive Two-Photon Photochromism of Spiropyrans in the Solid Phase,” Chemical Physics Letters, 381(5-6), pp. 572-578.
[3] L. R. Brown, E. R. Edelman, F. Fischel-Ghodsian, and R. Langer, 1996, “Characterization of Glucose-Mediated Insulin Release from Implantable Polymers,” Journal of Pharmaceutical Sciences, 85(12), pp. 1341-1345.
[4] S. G. Wax and R. R. Sands, 1999, “Electroactive Polymer Actuators and Devices,” Proceedings of SPIE, 3669(2), pp. 2-10.
[5] K. Ikuta, 1990, “Micro/Miniature Shape Memory Alloy Actuator,” IEEE International Conference on Robotics and Automation, pp. 2156-2161.
[6] L. J. Garner, L. N. Wilson, D. C. Lagoudas, and O. K. Rediniotis, 2000, “Development of a Shape Memory Alloy Actuated Biomimetic Vehicle,” Journal of Smart Materials and Structures, 9, pp. 673-683.
[7] S.-H. Liu, T.-S. Huang, and J.-Y. Yen, 2010, “Comparison of Sensor Fusion Methods for an SMA-Based Hexapod Biomimetic Robot,” Robotics and Autonomous Systems, 58(5), pp. 737-744.
[8] J.-S. Koh and K.-J. Cho, 2010, “Omegabot: Crawling Robot Inspired by Ascotis Selenaria,” IEEE International Conference on Robotics and Automation, pp. 109-114.

[9] S. Seok, C. D. Onal, R. Wood, D. Rus, and S. Kim, 2010, “Peristaltic Locomotion with Antagonistic Actuators in Soft Robotics,” IEEE International Conference on Robotics and Automation, pp. 1228-1233.
[10] T. Maeno and T. Hino, 2006, “Miniature Five-Fingered Robot Hand Driven By Shape Memory Alloy Actuators,” Proceedings of the 12th IASTED International Conference on Robotics and Automation, pp. 174-179.
[11] J.-H. Wang, 2009, “Optimal Shape Design for Flexural Rotary and Linear Motion Mechanisms,” Master Thesis, Science Department of Mechanical Engineering, National Cheng Kung University, Taiwan.
[12] P. J. White, M. L. Posner, and M. Yim, 2010, “Strength Analysis of Miniature Folded Right Angle Tetrahedron Chain Programmable Matter,” IEEE International Conference on Robotics and Automation, pp. 2785-2790.
[13] K. Houston, C. Eder, A. Sieber, A. Menciassi, M. C. Carrozza, and P. Dario, 2007, “Polymer Sensorised Microgrippers Using SMA Actuation,” IEEE International Conference on Robotics and Automation, pp. 820-825.
[14] J. H. Kyung, B. G. Ko, Y. H. Ha, and G. J. Chung, 2007, “Design of a Microgripper for Micromanipulation of Microcomponents Using SMA Wires and Flexible Hinges,” Sensors and Actuators A, 141, pp. 144-150.
[15] C.-M. Lin, 2009, “A Shape Memory Alloy Actuated Microgripper with Wide Handling Range,” Master Thesis, Science Department of Mechanical Engineering, National Cheng Kung University, Taiwan.
[16] M. Kohl, B. Krevet, and E. Just, 2002, “SMA Microgripper System,” Sensors and Actuators A, 97-98, pp. 646-652.


[17] G. B. Sincarsin, G. M. T. D'Eleuterio, and P. C. Hughes, 1993, “Dynamics of an Elastic Multibody Chain: Part D-Modelling of Joints,” Dynamics and Stability of Systems, 8(2), pp. 127-146.
[18] D. Vischer and H. Bleuler, 1993, “Self-Sensing Active Magnetic Levitation,” IEEE Transactions on Magnetic, 29(2), pp. 1276-1281.
[19] S.-T. Wu and W.-N. Chen, 2009, “Self-Sensing of a Solenoid Valve Via Phase Detection,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1165-1170.
[20] P. Eyabi and G. Washington, 2009, “Modeling and Sensorless Control of an Electromagnetic Valve Actuator,” Mechatronics, 16, pp. 159-175.
[21] H. Li and J. Ou, 2009, “Smart Concrete, Sensors and Self-Sensing Concrete Structures,” Key Engineering Materials, 400-402, pp. 69-80.
[22] E. T. Thostenson and T.-W. Chou, 2007, “Multifunctional Composites with Self-Sensing Capabilities: Carbon Nanotube-Based Networks,” Proceedings of SPIE, 6526, pp. 65261X.
[23] A. Punning, M. Kruusmaa, and A. Aabloo, 2007, “A Self-Sensing Ion Conducting Polymer Metal Composite (IPMC) Actuator,” Sensors and Actuators A, 136, pp. 656-664.
[24] M. Gurjar and N. Jalili, 2007, “Toward Ultrasmall Mass Detection Using Adaptive Self-Sensing Piezoelectrically Driven Microcantilevers,” IEEE/ASME Transactions on Mechatronics, 12(6), pp. 680-688.
[25] Y. Nam, J. Park, H. Park, and M. Sasaki, 2008, “Strain Self-Sensing of a Piezoelectric Material Using Phase Delay Compensation,” Sensors and Actuators A, 147, pp. 194-202.

[26] K. Ikuta, M. Tsukamoto, and S. Hirose, 1988, “" Shape Memory Servo Actuator System with Electric Resistance Feedback and Application for Active Endoscope,” IEEE International Conference on Robotics and Automation, pp. 427-430.
[27] M. Carballo, Z. J. Pu, and K. H. Wu, 1995, “Variation of Electrical Resistance and the Elastic Modulus of Shape Memory Alloys Under Different Loading and Temperature Conditions,” Journal of Intelligent Material Systems and Structures, 6, pp. 557-565.
[28] X. D. Wu, J. S. Wu, and Z. Wang, 1999, “The Variation of Electrical Resistance of Near Stoichiometric NiTi During Thermo-Mechanic Procedures,” Journal of Smart Materials and Structures, 8, pp. 574-578.
[29] M. Pozzi and G. Airoldi, 1999, “The Electrical Transport Properties of Shape Memory Alloys,” Materials Science and Engineering, A273-275, pp. 300-304.
[30] V. Antonucci, G. Faiella, M. Giordano, F. Mennella, and L. Nicolais, 2007, “Electrical Resistivity Study and Characterization During NiTi Phase Transformations,” Thermochimica Acta, 462, pp. 64-69.
[31] S.-H. Liu, T.-S. Huang and J.-Y. Yen, 2010, “Tracking Control of Shape-Memory-Alloy Actuators Based on Self-Sensing Feedback and Inverse Hysteresis Compensation,” Sensors, 10, pp. 112-127.
[32] N. Ma, G. Song and H.-J. Lee, 2004, “Position Control of Shape Memory Alloy Actuators with Internal Electrical Resistance Feedback Using Neural Networks,” Journal of Smart Materials and Structures, 13, pp. 777-783.
[33] D. Cui, G. Song, and H. Li, 2010, “Modeling of the Electrical Resistance of Shape Memory Alloy Wires,” Journal of Smart Materials and Structures, 19, 055019.
[34] D. C. Lagoudas, 2008, “Shape Memory Alloys: Modeling and Engineering Application,” Springer, New York.

[35] S. H. Lose, K. Ikuta, and Y. Umetani, 1984, “A New Design Method of Servo-Actuators Based on the Shape Memory Effect,” In Morecki et al., editor, Theory and Practice of Robots and Manipulators, MIT Press, pp. 339-349.
[36] K. Ikuta, M. Tsukamoto, and S. Hirose, 1991, “Mathematical Model and Experimental Verification of Shape Memory Alloy for Designing Micro Actuator,” IEEE International Conference on Robotics and Automation, pp. 103-108.
[37] S. M. Dutta and F. H. Ghorbel, 2005, “Differential Hysteresis Modeling of a Shape Memory Alloy Wire Actuator,” IEEE/ASME Transactions on Mechatronics, 10(2), pp. 189-197.
[38] S. Majima, K. Kodama, and T. Hasegawa, 2001, “Modeling of Shape Memory Alloy Actuator and Tracking Control System with the Model,” IEEE Transactions on Control Systems Technology, 9(1), pp. 54-59.
[39] K. K. Ahn and N. B. Kha, 2007, “Internal Model Control for Shape Memory Alloy Actuators Using Fuzzy Based Preisach Model,” Sensors and Actuators A, 136, pp. 730-741.
[40] G. Song, V. Chaudhry, and C. Batur, 2003, “Precision Tracking Control of Shape Memory Alloy Actuators Using Neural Networks and a Sliding-Mode Based Robust Controller,” Journal of Smart Materials and Structures, 12, pp. 223-231.
[41] Dynalloy, Inc. http://www.dynalloy.com/pdfs/TCF1140.pdf
[42] Y.-N. Yang, 2008, “Design of a Compliant Robotic Hand Actuated by Shape Memory Alloy Wires,” Master Thesis, Science Department of Mechanical Engineering, National Cheng Kung University, Taiwan.
[43] K. Malukhin and K. F. Ehmann, 2008, “An Experimental Investigation of the Feasibility of “Self-Sensing” Shape Memory Alloy Based Actuators,” Journal of Manufacturing Science and Engineering, 130(3), 031109.
[44] K. K. Ahn and N. B. Kha, 2006, “Improvement of the Performance of Hysteresis Compensation in SMA Actuators by Using Inverse Preisach Model in Closed-Loop Control system,” Journal of Mechanical Science and Technology, 20(5), pp. 634-642.
[45] B. Selden, K. Cho, and H. H. Asada, 2006, “Segmented Shape Memory Alloy Actuators Using Hysteresis Loop Control,” Journal of Smart Materials and Structures, 15, pp. 642-652.
[46] A. Kumagai, T.-I. Liu, and P. Hozian, 2006, “Control of Shape memory Alloy Actuators with a Neuro-Fuzzy Feedforward Model Element,” Journal of Intelligent Manufacturing, 17, pp. 45-56.
[47] K. K. Ahn and N. B. Kha, 2006, “Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller,” International Journal of Control, Automation, and Systems, 4(6), pp. 756-762.
[48] H.-W. Hwang, 2009, “Fuzzy Control for SMA Wire-Driven Robotic Mechanisms,” Master Thesis, Science Department of Mechanical Engineering, National Taiwan University, Taiwan.
[49] B. Hu, G. K. I. Mann, and R. G. Gosine, 1999, “New Methodology for Analytical and Optimal Design of Fuzzy PID Controllers,” IEEE Transactions on Fuzzy Systems, 7(5), pp. 521-539.
[50] S.-J. Ho, L.-S. Shu, M.-H. Hung, and S.-Y. HO, 2005, “Orthogonal Simulated Annealing Algorithm for Tuning PID Controllers by Optimizing Fuzzy Neural Networks,” IEEE Transactions on Fuzzy Systems, 14(3), pp. 421-434.
[51] N. Chronis and L. P. Lee, 2005, “Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution,” Journal of Microelectromechanucal systems, 14(4), pp. 857-863.

[52] S. Wakimoto, K. Ogura, K. Suzumori, and Y. Nishioka, 2009, “Miniature Soft Hand with Curling Rubber Pneumatic Actuators,” IEEE International Conference on Robotics and Automation, 12-17, pp. 556-561.
[53] R. Lumia and M. Shahinpoor, 2008, “IPMC Microgripper Research and Development,” Journal of Physics: Conference Series, 127, 012002.
[54] R. Abe, K. Takemura, K. Edamura, and S. Yokota, 2007, “Concept of a Micro Finger Using Electro-Conjugate Fluid and Fabrication of a Large Model Prototype,” Sensors and Actuators A, 136, pp. 629-637.
[55] R. Pérez, J. Agnus, C. Clévy, A. Hubert, and N. Chaillet, 2005, “Modeling, Fabrication, and Validation of a High-Performance 2-DoF Piezoactuator for Micromanipulation,” IEEE/ASME Transactions on Mechatronics, 10(2), pp. 161-171.
[56] D. Salomon, 2006, “Curves and Surface for Computer Graphics,” Springer, New York.
[57] C.-C. Lan and Y.-J. Cheng, 2006, “Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions,” Journal of Mechanical Design, 130(7), 072604.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw