進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1107201916002100
論文名稱(中文) 利用系統模擬法比較不同派工法則之績效-以台灣某石材企業為例
論文名稱(英文) Using System Simulation to Compare the Performance of Different Dispatching Rules - A Case Study of a Stone Enterprise in Taiwan
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩士在職專班
系所名稱(英) Department of Industrial and Information Management (on the job class)
學年度 107
學期 2
出版年 108
研究生(中文) 溫子齊
研究生(英文) Tzu-Chi Wen
學號 R37061383
學位類別 碩士
語文別 中文
論文頁數 57頁
口試委員 指導教授-蔡青志
口試委員-翁慈宗
口試委員-張裕清
中文關鍵字 石材產業  花崗石  排程改善  派工法則  系統模擬 
英文關鍵字 stone industry  marble  scheduling improvement  dispatching rule  system simulation 
學科別分類
中文摘要 天然石材的加工製造從最原始的山脈礦坑原石到成為一般我們日常生活中可以使用的建材之間,需要經過數道製程而成,其中因原石鋸切加工處理的時間很長,考慮整體加工時間是否可以應付訂單,以及是否在限制時間內完成後續的淨程或造成整個生產線的瓶頸,因此想要來解決這個重大問題。
然而在生產過程中,派工法則佔有非常重要的地位,法則決定在製品在進入機台時其加工時間與先後的順序,傳統對於派工的方式大部分依其過去經驗來派工或者依照現場資訊來做判斷,造成無法在限定的時間內完成後面的淨程造成原石因泥漿凝固損毀,甚至造成公司的巨大損失。
因此本研究為了解決石材的排程問題並使用系統模擬軟體來建立石材加工廠流程之模型,並且考慮比較不同的派工法則,經由實驗結果判斷何者最為適用。
本研究結果發現所提出最大原石尺寸法(Stone Size),在於一般訂單時間或工廠生產計畫的條件下,此派工法則使得鋸片消耗能夠有效利用並且大幅減少更換鋸片次數與成本,總淨利潤為最高,是比較適合的派工法則,實驗另一個結果顯示,當產品訂單具有高度時間價值,先進先出法(First In First Out,FIFO),因其特性無須花費時間排列,將使得時間花費最少,是比較適合的派工法則。
英文摘要 It takes plenty of processes to manufacture daily construction and decorative material from nature marble which is obtained from open cast quarries and nature. From these manufacturing process, marble cutting spends lots of time. Regarding the overall production throughput and the schedule of customers’ order which is within time limit, I conduct this research on the problem and try to solve the bottleneck of production line.
Dispatching rule plays a significant role in the production flow. It decides the priority of each process. Traditionally, dispatching rule is based on experience and current order information. However, this rule makes a decline in profits because of not finishing specific process in time and the marble would be damaged.
This research is to solve marble dispatching problem and using Arena Simulation Software to build up the procedure model for marble manufacturer. Besides, it considers for the different dispatching rule and compares with each result to find out the optimal solution.
In the conclusion, the study shows Stone Size method is the most appropriate for dispatching rule based on the normal factory production plan and order schedule. There are some advantages. To begin with, Stone Size method can reduce the consumption of saw blade. Then, it can efficiently reuse the tool and reduce the cost. Finally, the total profit can be the biggest. Besides Stone Size method, if the product is high value of timeliness, the study also shows another method (First in First Out) spends less cost and time because it doesn’t need to do permutations and combinations.
論文目次 目錄:
第一章 緒論 1
1.1 研究背景與動機 1
1.1.1 台灣石材產業的發展與面臨的問題 1
1.1.2 派工法則改善 2
1.2 研究目的與範圍 3
1.3 研究流程 4
第二章 文獻探討 6
2.1 排程相關研究: 6
2.1.1 排程的定義: 6
2.1.2 排程問題之分類與方法: 6
2.1.3 派工法則相關研究: 10
2.1.4 排程相關解決案例: 12
2.1.5 績效衡量指標: 13
2.2 作業等待時間限制: 14
2.2.1 降低重新加工或者報廢成本: 14
2.2.2 減少排隊等待時間: 15
2.3 系統模擬介紹: 16
2.3.1 系統模擬定義與條件: 16
2.3.2 模擬的優缺點: 17
2.3.3 模擬程序: 18
2.4 小結: 19
第三章 研究方法 20
3.1 問題定義與描述: 21
3.1.1 案例石材公司加工流程: 21
3.1.2 欲改善之目標 23
3.2 研究假設: 23
3.3 派工法則挑選與說明: 24
3.4 模型分析方法: 27
3.4.1 子集選擇法: 27
3.4.2 盒鬚圖介紹: 28
3.5 績效衡量指標挑選與說明: 29
3.6 小結: 30
第四章 模擬實驗 31
4.1 模型建構說明: 31
4.2 派工法則加入模型之控制變數調整: 38
4.3 模擬實驗結果分析: 39
4.3.1 針對整體平均流程時間實驗結果分析 40
4.3.2 針對平均石材準時達交率實驗結果分析 43
4.3.3 針對由於等待時間過長導致的廢料平均實驗結果分析 44
4.3.4 針對平均總廢品率實驗結果分析 46
4.3.5 針對平均總收入實驗結果分析 47
4.3.6 針對平均總成本實驗結果分析 48
4.3.7 針對平均總淨利潤實驗結果分析 49
4.4 模擬實驗增添控制變數之實驗結果 50
4.4.1 提高準時達交價值性之平均總淨利潤實驗結果分析 50
4.4.2 添加由於等待時間過長導致的石材處理成本之平均總淨利潤實驗結果分析 51
第五章 結論與後續研究的方向: 53
5.1 研究結論: 53
5.2 後續研究的方向: 54
參考文獻 55
參考文獻 英文文獻
1. Banks, J., Carson, J. S., Nelson, B. L., & Nicol, D. M. (2013). Discrete-Event System Simulation: Pearson New International Edition: Pearson Higher Ed.
2. Ðurasević, M., & Jakobović, D. (2018). A Survey Of Dispatching Rules For The Dynamic Unrelated Machines Environment. Expert Systems With Applications, 113, 555-569. Doi:Https://Doi.Org/10.1016/J.Eswa.2018.06.053
3. Gantt, H. L. (1913). Work, Wages, And Profits: Engineering Magazine Co.
4. Haupt, R. (1989). A Survey Of Priority Rule-Based Scheduling. Operations-Research-Spektrum, 11(1), 3-16.
5. Law, A. M. (2015). Simulation Modeling And Analysis (Vol. 2): Mcgraw-Hill Education; 5 Edition
6. Lee, J.-H., Li, J., & Horst, J. A. (2018). Serial Production Lines With Waiting Time Limits: Bernoulli Reliability Model. IEEE Transactions On Engineering Management, 65(2), 316-329.
7. Montani, C. (2013). Marble And Stones In The World: XXIV Report.
8. Motta Toledo, C. F., De Oliveira, L., De Freitas Pereira, R., França, P. M., & Morabito, R. (2014). A Genetic Algorithm/Mathematical Programming Approach To Solve A Two-Level Soft Drink Production Problem. Computers & Operations Research, 48, 40-52. Doi:Https://Doi.Org/10.1016/J.Cor.2014.02.012
9. Muñoz, E., & Capón-García, E. (2018). Systematic Approach Of Multi-Label Classification For Production Scheduling. Computers & Chemical Engineering. Doi:Https://Doi.Org/10.1016/J.Compchemeng.2018.08.020
10. Phan, M.-H., & Kim, K. H. (2015). Negotiating Truck Arrival Times Among Trucking Companies And A Container Terminal. Transportation Research Part E: Logistics And Transportation Review, 75, 132-144. Doi:Https://Doi.Org/10.1016/J.Tre.2015.01.004
11. Powers, M. J., Sanchez, S. M., & Lucas, T. W. (2012). The Exponential Expansion Of Simulation In Research. Paper Presented At The Proceedings Of The Winter Simulation Conference.
12. Raghavendra, B. (2018). Scheduling In Parallel Machines Environment Using Genetic Algorithm. Journal Of Applied Engineering Science, 16(1), 36-42.
13. Sen, R. P. (2009). Operations Research: Algorithms And Applications: PHI Learning Pvt. Ltd.
14. Shi, Z., Wang, L., Liu, P., & Shi, L. (2017). Minimizing Completion Time For Order Scheduling: Formulation And Heuristic Algorithm. IEEE Transactions On Automation Science And Engineering, 14(4), 1558-1569. Doi:10.1109/TASE.2015.2456131
15. Shokri, A., Bradley, G., & Nabhani, F. (2016). Reducing The Scrap Rate In An Electronic Manufacturing SME Through Lean Six Sigma Methodology.
16. Ssempebwa, R. (2013). Project Schedule Management.
17. Swamidass, P. M. (2000). Shortest Processing Time (SPT) Ruleshortest PROCESSING TIME RULE. In P. M. Swamidass (Ed.), Encyclopedia Of Production And Manufacturing Management (Pp. 686-687). Boston, MA: Springer US.
18. Teixeira, F. D. O., Oliveira, L., & Varela, L. R. (2014, 30 July-1 Aug. 2014). Comparative Analysis Of Scheduling Rules Through Arena For Parallel Machines. Paper Presented At The 2014 Sixth World Congress On Nature And Biologically Inspired Computing (Nabic 2014).
19. Vassilopoulou, S. (2014). Imperial References: The Gök Medrese In Sivas As An Example Of The Use Of Marble In Thirteenth-Century Anatolia. Retrieved From Doi:Http://Dx.Doi.Org/10.18452/7699
20. Vig, M. M., & Dooley, K. J. (1991). DYNAMIC RULES FOR DUE-DATE ASSIGNMENT. International Journal Of Production Research, 29(7), 1361-1377. Doi:10.1080/00207549108948016
21. Wang, S.-T., & Li, M.-H. (2018). Using Improved Simulated Anneal Arithmetic To Improve Semiconductor Packaging Ball Placement Process Capability. Advances In Mechanical Engineering, 10(2), 1687814017746514. Doi:10.1177/1687814017746514
22. Wu, C.-H., Chien, W.-C., Chuang, Y.-T., & Cheng, Y.-C. (2016). Multiple Product Admission Control In Semiconductor Manufacturing Systems With Process Queue Time (PQT) Constraints. Computers & Industrial Engineering, 99, 347-363. Doi:Https://Doi.Org/10.1016/J.Cie.2016.04.003
23. Wu, C.-H., Lin, J. T., & Chien, W.-C. (2012). Dynamic Production Control In Parallel Processing Systems Under Process Queue Time Constraints. Computers & Industrial Engineering, 63(1), 192-203. Doi:Https://Doi.Org/10.1016/J.Cie.2012.02.003
24. Wu, L., & Wang, S. (2018). Exact And Heuristic Methods To Solve The Parallel Machine Scheduling Problem With Multi-Processor Tasks. International Journal Of Production Economics, 201, 26-40. Doi:Https://Doi.Org/10.1016/J.Ijpe.2018.04.013
中文文獻

1. 王林丹. (2015). 河北曲阳汉白玉石雕的历史考察. 河北师范大学,
2. 周書賢. (2001). 開放型工廠派工法則之模擬研究. (碩士), 朝陽科技大學, 台中市.
3. 林清河. (2010). 工業工程與管理: 華泰.
4. 郭幸民. (2014). 系統模擬與 Arena 應用: 滄海.
5. 温郅懿. (2018). 應用系統模擬於不同派工法則之績效探討-以國內某金屬壓鑄廠為例. (碩士), 元智大學, 桃園縣.
6. 鄭雅云. (2011). 考慮機台閒置時間與工件等待時間之派工法則. (碩士), 逢甲大學, 台中市.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-06-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-06-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw