進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1107201915025800
論文名稱(中文) 量子退相干效應對鳥類磁感導航機制之影響
論文名稱(英文) Effects of Quantum Decoherence Interference on Birds’ Navigation Mechanism
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 107
學期 2
出版年 108
研究生(中文) 陳威儒
研究生(英文) Wei-Ju Chen
學號 P46041291
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 指導教授-楊憲東
口試委員-孫允平
口試委員-韓相宜
中文關鍵字 磁感機制  自由基對  量子退相干效應  虛擬視網膜  Lindblad方程式 
英文關鍵字 Magnetoreception  Free radical pair  Quantum decoherence  Virtual retina  Lindblad equation 
學科別分類
中文摘要 數十年以來,鳥類的年度或季節性遷徙行為被廣泛且深入地探討,如此能令某些物種依靠本能導航的能力稱為磁感機制。基於量子力學理論,磁感機制說明了受到地球磁場影響的鳥眼自由基對的自旋態變化是決定該導航本能的關鍵因素。在討論開放量子系統時,特別是以生存於自然界的野生候鳥為對象時,量子退相干效應是一種典型且不容忽視的干擾因素,而量子退相干效應帶來的影響也將是探討導航能力的重要課題。本文首先根據自由基對理論,以Liouville方程式建立磁感機制的一般性模型,並依其進行數值模擬與分析。接下來,本論文將設計一種投影方法,將所獲得的模擬數據轉換至虛擬視網膜上形成視覺化圖像。虛擬視網膜有助於演示鳥類的視線在受到地磁場影響時可能會看到的景象。接下來,本論文將以Lindblad方程式取代Liouville方程式,將原一般性模型改造為含有量子退相干效應影響之新模型,並分別以相應的環境參數假設討論五種可能的退相干情況,再投影到虛擬視網膜上。最後透過相互比較此五種可能退相干情況,分別討論量子退相干效應對磁感機制與虛擬視網膜成像之影響。
英文摘要 This article uses a numerical simulation method to simulate birds’ magnetoreception mechanism with the Liouville master equation based on free radical pair theory. A virtual retina projection method is also created in this article in order to visualize the magnetoreception mechanism as a visual compass. In isolated systems, the magnetic field strength and the coupling coefficients can still be the factors that may affect the magnetoreception mechanism. For a more realistic model, the Lindblad master equation, which is used for analyzing quantum decoherence effect, is further applied to the magnetoreception model. Quantum decoherence is a type of interference caused by the interaction between the quantum system and the environment. Quantum decoherence affects the magnetoreception system mainly by reducing the overall triplet yield of the magnetoreceptor particles, which is the source of the whole magnetoreception reaction. However, with some specific types of quantum decoherence, the accuracy of birds’ navigation can still be lifted according to which type the quantum decoherence is.
論文目次 摘要......I
Effects of Quantum Decoherence Interference on Birds' Navigation Mechanism......II
誌謝......VIII
目錄......IX
表目錄......XI
圖目錄......XII
符號......XIV
第1章 緒論......1
1.1 背景及文獻回顧......1
1.2 研究動機與目標......3
1.3 論文架構......4
第2章 鳥類磁感機制原理分析......7
2.1 自由基對的磁感效應......7
2.2 磁感效應數學模型......10
2.3 模擬視網膜模型之建立......18
2.4 視覺化磁感羅盤......24
第3章 參數模擬分析......28
3.1 環境磁場......28
3.2 量子自旋耦合......34
第4章 量子退相干的引入......45
4.1 量子退相干效應......45
4.2 退相干子項的選取......47
4.3 適用於磁感機制的數學分析方法......50
第5章 受量子退相干介入之視覺羅盤模擬分析......56
5.1 退相干模型的確立......56
5.2 SS退相干效應......58
5.3 ST0相位退相干效應......61
5.4 ST±相位退相干效應......63
5.5 量子退相干效應介入前後之比較......67
第6章 結論......70
6.1 結果與討論......70
6.2 未來展望......72
參考文獻......74
附錄A......77
參考文獻 [1]W. Wiltschko, and F. Merkel, “Orientierung zu gunruhiger Rotkehlchen im ztatischen Magnetfeld”, Verh. dt. Zool. Ges. 59, pp. 362-367, 1966.
[2]W. Wiltschko, and R. Wiltschko, “Magnetic compass of European robins”, Science 176, pp. 62-64, 1972.
[3]W. Wiltschko, and R. Wiltschko, “Red Light Disrupts magnetic orientation of Migratory Birds”, Nature 364, pp. 525-527, 1993.
[4]W. Wiltschko, and R. Wiltschko, “Magnetic orientation in birds”, J. Exp. Biol. 199, pp. 29-38, 1996.
[5]T. E. Dennis, M. J. Rayner, and M. M. Walker, “Evidence that pigeons orient to geomagnetic intensity during homing”, Proc. R. Soc. London Ser. B 274, pp. 1153-1158, 2007.
[6]C. Walcott, and K. Schmidt-Koenig, “The Effect On Pigeon Homing of Anesthesia During Displacement”, Theauk 90, pp. 281-286, 1973.
[7]K. Schulten, “Magnetic field effects in chemistry and biology”, Adv. Solid State Phys. 22, pp. 61-83, 1982.
[8]K. Schulten, H. Staerk, A. Weller, H.-J. Werner, and B. Nickel., “Magnetic Field Dependence of the Geminate Recombination of Radical Ion Pairs in Polar Solvents”, Z. Phys. Chem. 101, Issue 1-6, pp. 371-390, 1976.
[9]H.-J. Werner, Z. Schelten, and K. Schulten, “Theory of the Magnetic Field Modulated Geminate Recombination of Radical Ion Pairs in Polar Solvents: Application to the Pyrene-N, N-Dimethylaniline System”, J. Chem. Phys. 67, Issue 2, pp. 646-663, 1977.
[10]K. Schulten, and A. Weller, “Exploring Fast Electron Transfer Processes by Magnetic Fields”, Biophys. J. 24, Issue 1, pp. 295-305, 1978.
[11]T. Ritz, S. Adem, and 00.K. Schulten, “A Model for Photoreceptor-Based Magnetoreception in Birds”, Biophys. J. 78, pp. 707-718, 2000.
[12]J. Pearson, G. R. Feng, C. Zheng, and G. L. Long, “Experimental quantum simulation of Avian Compass in a nuclear”, Sci. China-Phys. Mech. Astron. 59, p. 630302, 2016.
[13]J. Coron, A. Grigoriu, C. Lefter, and G. Turinici, “Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling”, New J. Phys. 11, p. 105034, 2009.
[14]S. Cong, Y. Y. Zhang, “Superposition state preparation based on Lyapunov stability theorem in quantum systems”, China Univ. Sci. Tech. 38 (7), pp. 821–827, 2008.
[15]P. Haikka, S. Maniscalco, “Non-Markovian dynamics of a damped driven two-state system”, Phys. Rev. A 81 (5), p. 052103, 2010.
[16]A. A. Budini, “Open quantum system approach to single-molecule spectroscopy”, Phys. Rev. A 79, p. 043804, 2009.
[17]S. Maniscalco, S. Olivares, M.G.A. Paris, “Entanglement oscillations in non-Markovian quantum channels”, Phys. Rev. A 75, p. 062119, 2007.
[18]Y. Matsuzaki, S. C. Benjamin, and J. Fitzsimons, “Magnetic field sensing beyond the standard quantum limit under the effect of decoherence”, Phys. Rev. A 84, p. 012103, 2011.
[19]劉士豪,量子多位元退相干控制,國立成功大學碩士學位論文,2016。
[20]A. Carrillo, M. F. Cornelio, and M. C. de Oliveira, “Environment-induced anisotropy and sensitivity of the radical pair mechanism in the avian compass”, Phys. Rev. E 92, p. 012720, 2015.
[21]J. Cai, G. G. Guerreschi, and H. J. Briegel, “Quantum Control and Entanglement in a Chemical Compass”, Phys. Rev. Lett. 104, p. 220502, 2010.
[22]J. N. Bandyopadhyay, T. Paterek, and D. Kaszlikowski, “Quantum Coherence and Sensitivity of Avian Magnetoreception”, Phys. Rev. Lett. 109, p. 110502, 2012.
[23]M. Tiersch, and H. J. Briegel, “Decoherence in the chemical compass: the role of decoherence for avian magnetoreception”, Philos. Trans. R. Soc. A 370, pp. 4517-4540, 2012.
[24]V. S. Poonia, K. Kondabagil, D. Saha, and S. Ganguly, “On the functional window of the avian compass”, Phys. Rev. E 95, p. 052417, 2018.
[25]H. P. Breuer, F. Petruccione, “The Theory of Open Quantum Systems”, Oxford University Press, Oxford University Press, Oxford, pp.1524-1652, 2002.
[26]E. M. Gauger, E. Rieper, J. J. L. Morton, S. C. Benjamin, and V. Vedral, “Sustained Quantum Coherence and Entanglement in the Avian Compass”, Phys. Rev. Lett. 106, p. 040503, 2011.
[27]J. Cai, and M. B. Plenio, “Chemical Compass Model for Avian Magnetoreception as a Quantum Coherent Device”, Phys. Rev. Lett. 111, p. 230503, 2013.
[28]V. S. Poonia, D. Saha, and S. Ganguly, “State transitions and decoherence in the avian compass”, Phys. Rev. E 91, p. 052709, 2015.
[29]H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, and A. Messina, “Solution of the Lindblad Equation in the Kraus Representation”, Phys. Rev. A 74, p. 062113, 2006.
[30]P. Pearle, “Simple Derivation of the Lindblad Equation”, Eur. J. Phys. 33, pp. 805-822, 2012.
[31]M. Bolaños, and P. Barberis-Blostein, “Algebraic Solution of the Lindblad Equation for a Collection of Multilevel Systems Coupled to Independent Environments”, J. Phys. A: Math. Theo. 48, p. 445301, 2015.
[32]Paola Cappellaro, MIT Open Course 22.51: Quantum Theory of Radiation Interactions, Chapter 8, MIT, 2012.
[33]J. Cai, F. Caruso, and M. B. Plenio, “Quantum Limits for the Magnetic Sensitivity of a Chemical Compass”, Phys. Rev. A 85, p. 040304, 2012.
[34]呂宗翰,黑面琵鷺的磁感導航機制與化學羅盤之仿生應用,國立成功大學碩士學位論文,2016。
[35]R. Wiltschko, P. Thalau, D. Gehring, C. Nießner, T. Ritz, and W. Wiltschko, “Magnetoreception in birds: the effect of radio-frequency fields”, J. Royal Soc. Interface 12, p. 20141103, 2015.
[36]E. Thébault, C. C. Finlay, C. D. Beggan, P. Alken, et al., “International Geomagnetic Reference Field: the 12th Generation”, Earth Planets Space 67, pp. 67-79, 2015.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw