進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1107201720123400
論文名稱(中文) 於醫美消脂之可全方位電磁式震波產生器
論文名稱(英文) Development of an Omnidirectional-Capable Electromagnetic Shock Wave Generator for Aesthetic Lipolysis
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 105
學期 2
出版年 106
研究生(中文) 張明豪
研究生(英文) Ming-Hau Chang
學號 p48991141
學位類別 博士
語文別 英文
論文頁數 78頁
口試委員 指導教授-林三益
召集委員-黃啟鐘
口試委員-尤芳忞
口試委員-梁勝明
口試委員-馬亞尼
中文關鍵字 電磁式震波產生器  非侵入方式  消脂術  組織切片  醫療設備 
英文關鍵字 Electromagnetic shock wave generator  Non-invasive  Lipolysis  Histology slide  Medical device 
學科別分類
中文摘要 本論文主要工作為建立一套可全方位電磁式震波產生器(omnidirectional-capable electromagnetic shock wave generator)來達到消脂的功能,不同於傳統震波產生器,只能在單一垂直向上方向操作。於文中詳細介紹如何設計本消脂機等相關零組件、如何建立震波產生器所需要的高壓電力系統、如何量測震波所產生的聚焦壓力、以及如何有效評價本消脂機的性能與效果。實驗方法中,使用針狀式水中感音器(PVDF pressure sensor),量測水中震波聚焦壓力與計算所對應的能量強度(energy intensity)。更進一步對豬脂肪組織(porcine fatty tissue)進行體外試驗(in vitro),最後透過組織檢測(histological examination)方式,驗證本消脂機執行成效。
本電磁式震波產生器(Electromagnetic Shock Wave Generator, EMSWG)主要由4個基本零件所構成:電磁線圈(coil)、鋁片(aluminum disk)、光學透鏡(acoustic lens)和水囊(soft cover)。但為了使EMSWG更符合臨床的實用性與需求,可全方位EMSWG是使用3個支撐架(supports)輔助鋁片在全方位下運動,進而使本消脂機具有可全方位(omnidirectional-capable)執行治療的特性。經本實驗測試,證明不鏽鋼(stainless steel)支撐架比尼龍(nylon)材質支撐架可有效承受更高的震波擊發次數(shock wave exposures)而不會因材料疲乏(fatigue)而變形。
主要實驗結果顯示,在至少500次震波擊發次數與6 kV操作電壓下,可對厚度2公分豬脂肪達到消脂的效果。當震波擊發500次與操作電壓6 kV時,厚度2公分脂肪所量測的震波聚焦壓力為1.04±0.009 MPa,與對應的能量強度為0.061±0.00015 mJ/mm^2,可消除0.24 mm^2脂肪面積,消脂面積約為2.7 %。當震波擊發次數提高至2000次,在相同的6 kV操作電壓與2公分厚度脂肪下,更可消除2.35 mm^2脂肪面積,消脂面積約為26.9 %。更進一步,當操作電壓提升至6.5 kV時,震波聚焦壓力與能量強度也分別上升至1.25±0.003 MPa,與0.072±0.00021 mJ/mm^2,經2000次震波擊發後,能消除5.2 mm^2脂肪面積,消脂面積更提升為59.4%。
英文摘要 This thesis describes the process and lessons learned in the course of developing an electromagnetic shock wave generator (EMSWG) for the purpose of lipolysis in aesthetic medicine. The design and configuration of the power charging system, the shock wave intensity measurement system and the EMSWG itself are detailed in this work. Experiments using porcine adipose tissue are carried out to demonstrate the efficacy of using shock waves for lipolysis. In support of this work, we review and apply established concepts such as measurement of peak pressure, calculation of shock wave energy intensity and current measurement along with the histological preparation of tissues.
Improvements to the EMSWG in terms of lens design, membrane fixation, and a soft patient interface can add usability and convenience for eventual clinical use and allow the additional feature of omnidirectional positioning of the shock wave generator. Pertinent aspects of the design process such as the acoustic lens development and the evolution of the membrane supports are discussed. A supporting software tool for computer image processing is provided for automatic analysis of shock wave lipolysis effects. Results from both the development prototype and the current design of the EMSWG are given in this work. The major findings of the experiments show the application of the omnidirectional EMSWG at 6 kV operating voltage on 1 cm thick porcine adipose tissue specimens resulted in a peak pressure of 1.08±0.009 MPa and energy intensity of 0.064±0.0003 mJ/mm^2. On 2 cm thick specimens, the peak pressure of 1.04±0.009 MPa and energy intensity of 0.061±0.0002 mJ/mm^2 were observed. The 3 cm thick specimens yielded peak pressure of 1.01±0.004 MPa and energy intensity of 0.057±0.0002 mJ/mm^2. The histological evaluation of the 2 cm thick specimens showed a lysed area of about 2.35 mm^2 with 2000 shock wave exposures at 6 kV. With 2000 shock wave exposures at 6.5 kV, the lysed area increased to about 5.20 mm^2 with corresponding peak pressure of 1.25±0.003 MPa and energy intensity of 0.072±0.0002 mJ/mm^2.
Effective adipocyte lysis results at the operating voltages of at least 6 kV for this experimental framework. Lysed area increases with number of shock wave exposures. At 6 kV, 500 shock wave exposures results in a lysed area percentage of about 2.7 %. Increasing the number of shock wave exposures to 2000 yields a lysed area percentage of about 26.9 %. As expected, increasing the operating voltage enhances lipolysis effects. At 6.5 kV, 2000 shock wave exposures yield a large lysed area percentage of about 59.4 %. These results demonstrate feasibility for the application of the developed omnidirectional EMSWG as a non-invasive electromagnetic-type shock wave device for clinical lipolysis therapies.
論文目次 摘要................................................... I
ABSTRACT...............................................IX
ACKNOWLEDGEMENTS....................................... XI
CONTENTS...............................................XII
LIST OF TABLES.........................................XIV
LIST OF FIGURES ........................................XV
CHAPTER 1 INTRODUCTION.............................1
1.1 Problem Statement................................1
1.2 Motivation.......................................1
1.3 Contributions....................................3
1.4 Thesis Organization..............................4
CHAPTER 2 BACKGROUND & RELATED WORKS...............5
2.1 Background.......................................5
2.2 Literature Review................................7
2.3 Prerequisites Methods............................9
2.3.1 Measurement of Peak Pressure and Calculation of Energy Intensity................................................9
2.3.2 Histological Method and Evaluation..............11
2.3.3 Current Measurement.............................11
2.3.4 Shockwave Medium Selection......................12
CHAPTER 3 EXPERIMENTAL DESIGN PROCESS.............14
3.1 The Prototype of Power Charging System..........14
3.1.1 Interim Prototype of Electrical Improvements....16
3.1.2 Prototype Power System of Schematic and Details.19
3.1.3 Spark Gap for Trigger Control...................21
3.1.4 Spark Gap for Shielding.........................22
3.2 Design and Evolution of Initial EMSWG Prototype.23
3.2.1 Acoustic Lens...................................24
3.2.2 Shock Wave Membrane.............................25
3.2.3 Measurement of Acoustic Intensity...............26
3.2.4 Design of Shock Wave Coil.......................27
3.3 Improved of Omnidirectional EMSWG...............28
3.3.1 Omnidirectional EMSWG...........................28
3.3.2 Acoustic Lens Fixation..........................30
3.3.3 Fixation of Shock Wave Membrane.................30
3.3.4 Soft Cover Design...............................32
3.3.5 Improved Experimental Positioning...............32
CHAPTER 4 EXPERIMENTAL RESULTS....................34
4.1 Experimental Measurements.......................34
4.2 Shared Coil Current Measurement Results.........34
4.3 Typical Prototype SW Results....................35
4.3.1 Measurement of Peak Pressure & Energy Intensity.36
4.3.2 Histological Examination Results................36
4.4 Improved EMSWG Results..........................38
4.4.1 Measurement of Peak Pressure....................39
4.4.2 Effect of Adipose Tissue Thickness..............40
4.4.3 Results for Treated Porcine Adipocytes..........44
CHAPTER 5 DISCUSSIONS.............................51
5.1 Design Problems and Breakthroughs...............51
5.1.1 The Laser Positioning Method....................51
5.1.2 Lens Evolution..................................53
5.1.3 Design of Aluminum Membrane Supports............55
5.1.4 Experimental Safety Changes.....................56
5.1.5 Microscopic Evaluation of Damaged Porcine Adipocytes...56
5.1.6 Image Processing of In Vitro Results............58
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS............61
6.1 Conclusions.....................................61
6.2 Future Works....................................62
6.3 Future Applications of Shock Wave Technology....63
REFERENCES..............................................65
APPENDIX A – LIST OF COMMERCIAL ELECTRICAL COMPONENTS...70
APPENDIX B – HISTOLOGICAL PROCESS.......................72
APPENDIX C – IMAGE PROCESSING...........................73
APPENDIX D – AUXILIARY MOUNTED LASER POSITIONING SYSTEM.74
PUBLICATION LIST........................................77

參考文獻 [1] Kuhn, C., Angehrn, F., Sonnabend, O., and Voss, A., "Impact of extracorporeal shock waves on the human skin with cellulite: A case study of an unique instance," Clinical Interventions in Aging, vol. 3, no. 1, pp. 201-210, 2008.
[2] Delius, D., "Medical applications and bioeffects of extracorporeal shock waves," Shock Waves, vol. 4, no. 2, pp. 55-72, 1994.
[3] Blackburn, G. L., and Walker, W. A., "Science-based solutions to obesity: what are the roles of academia, government, industry, and health care?" The American journal of clinical nutrition, vol. 82, pp. 207S-273S, 2005.
[4] Andreyeva T., Sturm, R., and Ringel, J. S., "Moderate and severe obesity have large differences in health care costs.," Obesity Research, vol. 12, no. 12, pp. 1936-43, 2004.
[5] Rassweiler, J. J., Knoll, T., Kohrmann, K. U., McAteer, J. A., Lingeman, J. E., Cleveland, R. O., Bailey, M. R., and Chaussy, C., "Shock wave technology and application: an update," European Urology, vol. 59, no. 5, pp. 784-796, 2011.
[6] Antonic, V., Mittermayr, R., Schaden, W., and Stojadinovic, A., "Evidence supporting extracorporeal shockwave therapy for acute and chronic soft tissue wounds," Wounds-a Compendium of Clinical Research and Practice, vol. 23, no. 7, pp. 204-215, 2011.
[7] Wang, C. J., Huang, H. Y., Yang, K., Wang, F. S., and Wong, M., "Pathomechanism of shock wave injuries on femoral artery, vein and nerve: an experimental study in dogs," Injury, vol. 33, no. 5, pp. 439-446, 2002.
[8] Wang, F. S., Yang, K. D., Chen, R. F., Wang, C. J., and Chen, S. M., "Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-β1," Journal of Bone and Joint Surgery, vol. 84, no. 3, pp. 457-461, 2002.
[9] Wang, C. J., Wang, F. S., Yang, K. D., Weng, L. H., Hsu, C. C., Huang, C. S., and Yang, L C., "Shock wave therapy induces neovascularization at the tendon–bone junction. a study in rabbits," Journal of Orthopaedic Research, vol. 21, no. 6, pp. 984-989, 2003.
[10] Wang, C. J., Yang, K. D., Ko, J. Y., Huang, C. C., Huang, H. Y., and Wang, F. S.,"The effects of shockwave on bone healing and systemic concentrations of nitric oxide (NO), TGF-β1, VEGF and BMP-2 in long bone non-unions," Nitric Oxide, vol. 20, no. 4, pp. 298-303, 2009.
[11] Wang, C. J., Wu, R. W., and Yang, Y. J., "Treatment of diabetic foot ulcers: A comparative study of extracorporeal shockwave therapy and hyperbaric oxygen therapy," Diabetes Research and Clinical Practice, vol. 92, no. 2, pp. 187-193, 2011.
[12] Wang, C. J., "Extracorporeal shockwave therapy in musculoskeletal disorders," Journal of Orthopaedic Surgery and Research, vol. 7, page 8, 2012.
[13] McClure, S., and Dorfmüller, C., "Extracorporeal shock wave therapy: theory and equipment," Clinical Techniques in Equine Practice, vol. 2, no. 4, pp. 348-357, 2003.
[14] Fukumoto, Y., Ito, A., Uwatoku, T., Matoba, T., Kishi, T., Tanaka, H., Takeshita, A., Sunagawa, K., and Shimokawa, H., "Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease," Coronary Artery Disease, vol. 17, no. 1, pp. 63-70, 2006.
[15] Stainberg, J. S., Stojadinovic, A., Elster, E., Peoples, G., and Attinger, C. E., "Is there a role for ESWT in wound care?," Podiatry Today, vol. 19, pp. 62-68, 2006.
[16] Liang, S. M., Yeh, C. N., Yan, J. J., Wan, L. R., and Lee, J. W., "An in-vitro experiment on yysing adipose tissue by shock waves," Journal of Medical and Biological Engineering, vol. 28, no. 4, pp. 203-209, 2008.
[17] Liang, S. M., Zheng, K. F., Yan, J. J., Wan, R. R., and Wen, C. Y., "Animal study on lysing adipose tissues by shock waves," Journal of Medical and Biological Engineering, vol. 30, no. 3, pp. 145-151, 2010.
[18] Rohrich, R. J., Beran, S. J., Kenkel, J. M., Adams, W. P., and DiSpaltro, F., "Extending the role of liposuction in body contouring with ultrasound-assisted liposuction," Plastic and Reconstructive Surgery, vol. 101, no. 4, pp. 1090-1102, 1998.
[19] Del Campo, A. F., Allegretti, E. R., Fernandes Filho, J. A., and Gordon, C. B., "Liposuction: procedure for focal volume reduction and body contour remodeling," World Journal of Surgery, vol. 22, no. 9, pp. 981-986, 1998.
[20] Kazuki, S., Kazunori, U., Tomohiko, O., Hiroyuki, A., Keiichi, I., Hiroo, I., Naoto, T., Hiroshi, N., Yasuhiro, I., and Hisao, T., "A pilot study on ultrasound-assisted liposuction of the greater omentum in porcine models," Minimally Invasive Therapy and Allied Technologies, vol. 21, no. 2, pp. 71-77, 2012.
[21] Sadick, N., and Magro, C., "A study evaluating the safety and efficacy of the velasmooth TM system in the treatment of cellulite," Journal of Cosmetic and Laser Therapy, vol. 9, no. 1, pp. 15-20, 2007.
[22] Angehrn, F., Kuhn, C., and Voss, A., "Can cellulite be treated with low-energy extracorporeal shock wave therapy?," Clinical Interventions in Aging, vol. 2, no. 4, pp. 623-630, 2007.
[23] Moraga, J. M., Altés, T. V., Riquelme, A. M., Marcosy, M. I., and Torre, J. R., "Body contouring by non-invasive transdermal focused ultrasound," Lasers in Surgery and Medicine, vol. 39, no. 4, pp. 315-323, 2007.
[24] Coleman, K. M., Coleman, W. P., and Benchetrit, A., "Non-invasive, external ultrasonic lipolysis," Seminars in Cutaneous Medicine and Surgery, vol. 28, no. 4, pp. 263-267, 2009.
[25] Brown, S. A., Greenbaum, L., Shtukmaster, S., Zadok, Y., Ezra, S. B., and Kushkuley, L., "Characterization of nonthermal focused ultrasound for noninvasive selective fat cell disruption (lysis): technical and preclinical assessment," Plastic and reconstructive surgery, vol. 124, no. 1, page 10, 2009.
[26] Adatto, M. A., Neilson, R. A., Novak, P., Krotz, A., and Haller, G., "Body shaping with acoustic wave therapy AWT®/EPAT®: Randomized, controlled study on 14 subjects," Journal of Cosmetic and Laser Therapy, vol. 13, no. 6, pp. 291-296, 2011.
[27] Shalom, A., Wiser, I., Brawer, S., and Azhari, H., "Safety and tolerability of a focused ultrasound device for treatment of adipose tissue in subjects undergoing abdominoplasty: a placebo-control pilot study," Dermatologic Surgery, vol. 39, no. 5, pp. 744-751, 2013.
[28] Nestor, M. S., Newburger, J., and Zarraga, M. B., "Body contouring using 635-nm low level laser therapy," Seminars in Cutaneous Medicine and Surgery, vol. 32, no. 1, pp. 35-40, 2013.
[29] Leistner, R., Nordahl, G. W., Grobholz, R., Michel, M., Marlinghaus, E., Köhrmann, K., Alken, P., and Häcker, A., "A new electromagnetic shock-wave generator “SLX-F2” with user-selectable dual focus size: ex vivo evaluation of renal injury," Urological Research, vol. 35, no. 4, pp. 165-171, 2007.
[30] Senyucel, M., Boybeyi, O., Ayva, S., Aslan, M., Soyer, T., Demet, A., Kisa, U., Basar, M., and Cakmak, M., "Evaluation of contralateral kidney, liver and lung after extracorporeal shock wave lithotripsy in rabbits," Urolithiasis, vol. 41, no. 5, pp. 431-436, 2013.
[31] Romeo, P., Lavanga, V., Pagani, D., and Sansone, V., "Extracorporeal shock wave therapy in musculoskeletal disorders: a review," Medical Principles and Practice, vol. 23, no. 1, pp. 7-13, 2014.
[32] Mancini, J. G., Neisius, A., Smith, N., Sankin, G., Astroza, G. M., Lipkin, M. E., Simmons, W. N., Preminger, G. M., and Zhong, P., "Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model," The Journal of Urology, vol. 190, no. 3, pp. 1096-1101, 2013.
[33] Mittermayr, R., Hartinger, J., Antonic, V., Meinl, A., Pfeifer, S., Stojadinovic, A., Schaden, W., and Redl, H., "Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis," Annals of Surgery, vol. 253, no. 5, pp. 1024-1032, 2011.
[34] Raabe, O.,Shell, K., Goessl, A., Crispens, C., Delhasse, Y., Eva, A., Bobis, G. S., Wenisch, S., and Arnhold, S., "Effect of extracorporeal shock wave on proliferation and differentiation of equine adipose tissue-derived mesenchymal stem cells in vitro," American Journal of Stem Cells, vol. 2, no. 1, pp. 62-73, 2013.
[35] Ogden, J. A., Anna, T. K., and Reiner, S., "Principles of shock wave therapy," Clinical orthopaedics and related research, vol. 28, no. 387, pp. 8-17, 2001.
[36] Mittermayr, R., Antonic, V., Hartinger, J., Kaufmann, H., Redl, H., Téot, L., Stojadinovic, A., and Schaden, W., "Extracorporeal shock wave therapy (ESWT) for wound healing: Technology, mechanisms, and clinical efficacy," Wound Repair and Regeneration, vol. 20, no. 4, pp. 456-465, 2012.
[37] Chilibon, I., Wevers, M., Lafaut, J. P., and Baert, L., "Cavitation role in extracorporeal shock wave lithotripsy," Journal of Optoelectronics and Advanced Materials, vol. 8, no. 1, pp. 235-237, 2006.
[38] Supponen, O., Kobel, P., Obreschkow, D., and Farhat, M., "The inner world of a collapsing bubble," Physics of Fluids, vol. 27, no. 9, page 091113, 2015.
[39] Petty, R. W., and Kantrowitz, A., "The production and stability of converging shock waves," Journal of Applied Physics, vol. 22, no. 7, pp. 878-886, 1951.
[40] Bailitis, E., "Der Schallimpuls eines Flussigkeitsfunkens (The pressure pulse of a liquid spark)," Zeitschrift fur angewandte Physic einschileâlch Nckleonik, vol. 9, pp. 429-434, 1957.
[41] Hausler, E., and Kiefer, W., "Anregung von srosswellen in flussigkeiten durch hochgeschwindigkeitswassertropfen," Verh Dtsch Physik Ges, vol. 10, pp. 36-42, 1971.
[42] Chaussy, C., Schmiedt, E., Jocham, D., Schuller, J., Brendel, W., Forsssman, B., and Walther, W., "First clinical experience with extracorporeally induced destruction of kideny stones by shock waves," Journal of Urology, vol. 127, pp. 417-420, 1982.
[43] Chaussy, C., Schmiedt, E., Jocham, D., Schuller, J., Brendel, W., and Liedl, B., "Extracorporeal shock wave lithotripsy (ESWL) for treatment of urolithiasis," Urology, vol. 93, pp. 59-66, 1984.
[44] Groenig, H., "Shock wave focusing phenomena," Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, Stanford University Press, pp. 43-56, 1985.
[45] Coleman, A. J., Saunder, J. E., Crum, L. A., and Dyson, M., "Acoustic cavitation generated by an extracorporeal shock- wave lithotripter," Ultrasound in Medicine and Biology, vol. 13, no. 2, 1987.
[46] Patrick, T., Finlayson, B., Robert, J., Gossip, H., Wallace, C., Walker R., Walck, S., and Nasr, M., "Measurement of shock wave pressure used for lithotripsy," Journal of Urology, vol. 136, pp. 733-738, 1986.
[47] Müller, M., "Experimental investigations on focusing of weak spherical shock wave in water by shallow eillipsoidal reflector," Acustica, vol. 64, pp. 85-93, 1987.
[48] Chuong, C. J., Zhong, P., and Preminger, G. M., "A comparison of stone damage caused by different modes of shock wave generation," Journal of Urology, vol. 148, pp. 200-205, 1992.
[49] Sturtevant, B., “Shock wave physics of lithotriptors,” Smith’s Textbook of Endourology, Quality Medical Publishing, Inc., pp. 520-552, 1996.
[50] Wang, C. J., Pai, C. H., and Huang, H. Y., "Shock wave enhanced neovascularization at the tendon bone junction, an experiment in dog model,” The 3rd Congress of the International Society for Musculoskeletal Shock Wave Therapy," Naples, page 96, 2000.
[51] Wang, C. J., Chen, Y. C., and Huang, H. Y., "Pathomechanism of shock wave induced injuries on femoral artery, vein and nerve," Presented at the 3rd Congress of the International Society for Musculoskeletal Shock Wave Therapy, Naples, 2000.
[52] Wang, C. J., Ko, J. Y., and Chen, H. S., "Treatment of calcifying tendinitis of the shoulder with shock wave therapy," Clinical Orthopaedics and Related Research, vol. 387, pp. 83-89, 2001.
[53] Wang, C. J., Chen, H. S., Chen, C. E., and Yang, K. D., "Treatment of nonunions of long bone fractures with shock waves," Clinical Orthopaedics and Related Research, vol. 387, pp. 95-101, 2001.
[54] Kodama T., and Tomita, Y., "Cavitation bubble behavior and bubble-shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics," Applied. Physics, vol. 70, issue 1, pp. 139-149, 2000.
[55] Brown, S., “What happens to the fat after treatment with the UltraShape device,” Published by Ultrashape Ltd. 30 Habarzel Street Tel Aviv 67910 Israel, 2005.
[56] Yeh, C. N., "A pilot study on extracorporeal shock wave lipotripsy," Master Thesis, Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, 2007.
[57] Liu, D. L., "Evaluation of shock wave wnergy attenuation and tissue damage in emulated," Master Thesis, Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, 2007.
[58] Liang, S. M., Chang, M. H., and Yang, Z. Y., "Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis," Review of Scientific Instruments, vol. 85, no. 1, pp. 015113-015113-7, 2014.
[59] Azhari, H., Basics of Biomedical Ultrasound for Engineers, John Wiley & Sons, Inc., page 313, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-06-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw