進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1107201415434600
論文名稱(中文) 探討新生鼠缺血缺氧腦傷中神經血管性損傷的機制
論文名稱(英文) The mechanism of neurovascular damage in neonatal rat with hypoxic-ischemic brain injury
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 102
學期 2
出版年 103
研究生(中文) 許宜菁
研究生(英文) Yi-Ching Hsu
學號 s58941565
學位類別 博士
語文別 英文
論文頁數 76頁
口試委員 指導教授-黃朝慶
召集委員-蔡少正
口試委員-蕭璦莉
口試委員-張瑛玿
口試委員-王家儀
中文關鍵字 缺血缺氧性腦傷  神經血管性單元  腦血流  血管保護  一氧化氮合成酶 
英文關鍵字 hypoxia-ischemia brain injury  neurovascular unit  cerebral blood flow  vascular protection  nitric oxide synthase 
學科別分類
中文摘要 腦部細胞對氧氣的缺乏極為敏感,某些腦部細胞甚至在氧氣供應中斷的5分鐘後即開始死亡,因此腦缺氧足以快速的造成腦部傷害甚至腦細胞死亡。由於缺氧對腦部而言是一種緊急情況,越快給予醫療或重新供給氧氣,越能減少腦部的嚴重傷害或死亡。新生兒缺血缺氧性腦傷害為主要造成新生兒死亡與長期腦部失能的腦部病變,而目前已發展的神經保護藥物,用在中風病患上仍無法見效。過去研究已指出神經血管性單元在缺氧性壓力下,神經細胞與微小血管的反應一樣快速,因此血管保護可能可做為缺氧性腦傷的有效治療標的。我們利用出生後7天大的新生幼鼠做實驗模式,給予缺血缺氧處理,造成腦部的缺血缺氧性腦傷,探討其中傷害的機制。腦部血管病變是在急慢性腦部病變中相當常見的傷害,一旦缺乏血流供應,腦細胞迅速死亡,殘存的細胞將不足以維持正常功能。近年來在成鼠實驗模式中,神經血管性單元在腦部血液供應與腦部傷害之間的關連性逐漸被提及,尤其是缺血所造成的後續發炎反應、血管新生,在在影響腦傷的發展。因此本研究目標在於釐清新生兒缺血缺氧模式中血管性損傷是否是個早期事件,以及一氧化氮在血管性傷害中可能扮演的角色。結果指出在幼鼠模式中,早至缺血缺氧後一小時即可見到血管性病變與免疫球蛋白漏出血管外;3-硝基酪氨酸的表現量在缺氧後快速增加。而事先給予神經性一氧化氮合成酶(neuronal-NOS)及誘發性一氧化氮合成酶(inducible-NOS)的抑制劑分別有完全或部分的腦部保護效果。同時以缺血前置處理(ischemic preconditioning)做為已知的保護模式,比較其保護效果。僅在事先給予nNOS的抑制劑,或以缺血前置處理時,可維持腦部血液灌注,表示其可能是藉由血管保護進而達到腦部保護的效果。而缺血前置處理與血管內皮細胞之間是如何調控,因而對缺氧缺血性腦損傷有保護效果,則需進一步的研究。
英文摘要 Brain cells are extremely sensitive to oxygen deprivation. Some brain cells actually start dying just under five minutes after their oxygen supply is cut. As a result, brain hypoxia can kill brain cells and rapidly cause severe brain damage. This is an emergency, and the sooner medical attention is given and the oxygen supply restored, the lower the chances of severe brain damage or death. Neonatal hypoxic-ischemic (HI) stress can lead to HI encephalopathy. There is still no effective drug against neonatal HI brain injury. Most neuroprotective agents have not benefitted patients with stroke. Because researchers have reported that neurovascular units can be the targets of hypoxic stress and that both neurons and microvessels respond equally rapidly to the insult, it has been hypothesized that vascular protection would be more effective than neuroprotection against HI brain damage. To clarify the function of neurovascular unit in neonatal HI brain injury, a major cause of neonatal mortality and long-term disability, we used 7-day-old rat pups with an animal model of HI injury: one side carotid artery was permanently ligated and each rat pup was subjected to systemic hypoxia (8% O for 2 h) to induce ipsilateral cerebral HI injury. This study investigated whether neurovascular unit damage is an early event in HI neonatal brain damage and how nitric oxide contributes to HI-induced brain injury. The data show that IgG leakage and microvascular change were observed with transmission electron microscopy (TEM) as early as 1 h after HI insult. Nitrotyrosine was overexpressed immediately after reoxygenation. The hypothesis that “microvascular damage occurs soon after hypoxic-ischemia: neuronal nitric oxide synthase (nNOS) is activated and contributes to brain injury” was tested. Treating the rat pups with 7-nitroindazole (7-NI), an nNOS inhibitor, and aminoguanidine (AG), an inducible NOS (iNOS) inhibitor, before hypoxia provided complete and partial neuroprotection, respectively. I also use ischemic preconditioning (IP) as a complete brain protection model for comparison. Pretreatment with 7-NI and IP protected cerebral blood flow (CBF) from hypoxia-induced hypoperfusion that reduced the brain infarct area. In summary, nNOS-mediated vascular damage is an early event caused by hypoxic-ischemia and that vascular protection might be better than neuroprotection. However, how the IP is related to endothelial cells requires additional investigation.
論文目次 中文摘要...................................1
Abstract...................................3
Acknowledgement............................5
Contents...................................7
Figure contents............................8
Abbreviation...............................9
Introduction..............................10
Materials and methods.....................16
Results...................................23
Discussion................................30
References................................35
Figures and figure legends................45
Publication...............................76
參考文獻 1. Johnston, M.V., Trescher, W.H., Ishida, A. & Nakajima, W. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 2001; 49: 735-741.
2. Vannucci, R.C. Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res 1990; 27: 317-326.
3. Ferriero, D.M. Neonatal brain injury. N Engl J Med 2004; 351: 1985-1995.
4. Robertson, C.M., Finer, N.N. & Grace, M.G. School performance of survivors of neonatal encephalopathy associated with birth asphyxia at term. J Pediatr 1989; 114: 753-760.
5. Shankaran, S., Woldt, E., Koepke, T., Bedard, M.P. & Nandyal, R. Acute neonatal morbidity and long-term central nervous system sequelae of perinatal asphyxia in term infants. Early Hum Dev 1991; 25: 135-148.
6. Ferriero, D.M. Neonatal brain injury. N Engl J Med 2004; 351: 1985-1995.
7. Johnston, M.V., Fatemi, A., Wilson, M.A. & Northington, F. Treatment advances in neonatal neuroprotection and neurointensive care. Lancet Neurol 2011; 10: 372-382.
8. Tam, S.J. & Watts, R.J. Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu Rev Neurosci 2010; 33: 379-408.
9. Quaegebeur, A., Lange, C. & Carmeliet, P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 2011; 71: 406-424.
10. del Zoppo, G.J. Stroke and neurovascular protection. N Engl J Med 2006; 354: 553-55.
11. Lin, W.Y., Chang, Y.C., Ho, C.J. & Huang, C.C. Ischemic preconditioning reduces neurovascular damage after hypoxia-ischemia via the cellular inhibitor of apoptosis 1 in neonatal brain. Stroke 2013; 44: 162-169.
12. del Zoppo, G.J. Stroke and neurovascular protection.[comment]. N Engl J Med 2006; 354: 553-555.
13. del Zoppo, G.J. & Mabuchi, T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 2003; 23: 879-894.
14. Lo, E.H., Broderick, J.P. & Moskowitz, M.A. tPA and proteolysis in the neurovascular unit. Stroke 2004; 35: 354-356.
15. Mabuchi, T., Lucero, J., Feng, A., Koziol, J.A. & del Zoppo, G.J. Focal cerebral ischemia preferentially affects neurons distant from their neighboring microvessels. J Cereb Blood Flow Metab 2005; 25: 257-266.
16. Krizanac-Bengez, L., Mayberg, M.R. & Janigro, D. The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology. Neurol Res 2004; 26: 846-853.
17. Tagaya, M., Haring, HP., Stuiver, I., Wagner, S., Abumiya, T., Lucero, J., Lee, P., Copeland, BR., Seiffert, D. & del Zoppo, G.J. Rapid loss of microvascular integrin expression during focal brain ischemia reflects neuron injury. J Cereb Blood Flow Metab 2001; 21: 835-846.
18. Girouard, H. & Iadecola, C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physio 2006; 100: 328-335.
19. Muramatsu, K., Fukuda, A., Togari, H., Wada, Y. & Nishino, H. Vulnerability to cerebral hypoxic-ischemic insult in neonatal but not in adult rats is in parallel with disruption of the blood-brain barrier. Stroke 1997; 28: 2281-2288.
20. Rodriguez-Yanez, M., Castellanos, M., Blanco, M., Mosquera, E. & Castillo, J. Vascular protection in brain ischemia. Cerebrovasc Dis 2006; 21: Suppl 2, 21-29.
21. Wardlaw, J.M., Lindley, R.I. & Lewis, S. Thrombolysis for acute ischemic stroke: still a treatment for the few by the few. West J Med 2002; 176: 198-199.
22. Brott, T. & Bogousslavsky, J. Treatment of acute ischemic stroke. N Engl J Med 2000; 343: 710-722.
23. Vannucci, R.C., Connor, JR., Mauger, DT., Palmer, C., Smith, MB., Towfighi, J. & Vannucci, SJ. Rat model of perinatal hypoxic-ischemic brain damage. J Neurosci Res 1999; 55: 158-163.
24. Vannucci, R.C. & Vannucci, S.J. Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci 2005; 27: 81-86.
25. Kirino, T. Ischemic tolerance. J Cereb Blood Flow Metab 2002; 22: 1283-1296.
26. Dirnagl, U., Simon, R.P. & Hallenbeck, J.M. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 2003; 26: 248-254.
27. Gidday, J.M. Cerebral preconditioning and ischaemic tolerance. Nat rev Neurosci 2006; 7: 437-448.
28. Bergeron, M., Gidday, JM., Yu, AY., Semenza, GL., Ferriero, DM. & Sharp, FR. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 2000; 48: 285-296.
29. Eklind, S., Mallard, C., Arvidsson, P. & Hagberg, H. Lipopolysaccharide induces both a primary and a secondary phase of sensitization in the developing rat brain. Pediatr Res 2005; 58: 112-116.
30. Gustavsson, M., Mallard, C., Vannucci, SJ., Wilson, MA., Johnston, MV. & Hagberg, H. Vascular response to hypoxic preconditioning in the immature brain. J Cereb Blood Flow Metab 2007; 27: 928-938.
31. Baker, E.A., Tian, Y., Adler, S. & Verbalis, J.G. Blood-brain barrier disruption and complement activation in the brain following rapid correction of chronic hyponatremia. Exp Neurol 2000; 165: 221-230.
32. Lin, W.Y., Chang, Y.C., Lee, H.T. & Huang, C.C. CREB activation in the rapid, intermediate, and delayed ischemic preconditioning against hypoxic-ischemia in neonatal rat. J Neurochem 2009; 108: 847-859.
33. Dirnagl, U., Iadecola, C. & Moskowitz, M.A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999; 22: 391-397.
34. Sharp, F.R., Lu, A., Tang, Y. & Millhorn, D.E. Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 2000; 20: 1011-1032.
35. Kuroiwa, T., Ting, P., Martinez, H. & Klatzo, I. The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol 1985; 68: 122-129.
36. Bolanos, J.P. & Almeida, A. Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1999; 1411: 415-436.
37. Vannucci, R.C. & Perlman, J.M. Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics 1997; 100: 1004-1014.
38. Tan, K.H., Harrington, S., Purcell, W.M. & Hurst, R.D. Peroxynitrite mediates nitric oxide-induced blood-brain barrier damage. Neurochem Res 2004; 29: 579-587.
39. Salvemini, D., Wang, Z.Q., Stern, M.K., Currie, M.G. & Misko, T.P. Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc Natl Acad Sci U. S. A. 1998; 95: 2659-2663.
40. Szabo, C., Ischiropoulos, H. & Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 2007; 6: 662-680.
41. Girouard, H., Park, L., Anrather, J., Zhou, P. & Iadecola, C. Cerebrovascular nitrosative stress mediates neurovascular and endothelial dysfunction induced by angiotensin II. Arterioscler Thromb Vasc Biol 2007; 27: 303-309.
42. Sirinyan, M., Sennlaub, F., Dorfman, A., Sapieha, P., Gobeil, F. Jr., Hardy, P., Lachapelle, P. & Chemtob, S. Hyperoxic exposure leads to nitrative stress and ensuing microvascular degeneration and diminished brain mass and function in the immature subject. Stroke 2006; 37: 2807-2815.
43. Liu, J.S., Zhao, M.L., Brosnan, C.F. & Lee, S.C. Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol 2001; 158: 2057-2066.
44. Gursoy-Ozdemir, Y., Bolay, H., Saribas, O. & Dalkara, T. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke 2000; 31: 1974-1980.
45. Groenendaal, F., Lammers, H., Smit, D. & Nikkels, P.G. Nitrotyrosine in brain tissue of neonates after perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 2006; 91: F429-433.
46. Enkhbaatar, P., Murakami, K., Shimoda, K., Mizutani, A., McGuire, R., Schmalstieg, F., Cox, R., Hawkins, H., Jodoin, J., Lee, S., Traber, L., Herndon, D. & Traber, D. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole attenuates acute lung injury in an ovine model. Am J Physiol Regul Integr Comp Physiol 2003; 285: R366-372.
47. O'Neill, M.J., Hicks, C. & Ward, M. Neuroprotective effects of 7-nitroindazole in the gerbil model of global cerebral ischaemia. Eur J Pharmacol 1996; 310: 115-122.
48. Ishida, A., Trescher, W.H., Lange, M.S. & Johnston, M.V. Prolonged suppression of brain nitric oxide synthase activity by 7-nitroindazole protects against cerebral hypoxic-ischemic injury in neonatal rat. Brain Deve 2001; 23: 349-354.
49. Hara, H., Huang, P.L., Panahian, N., Fishman, M.C. & Moskowitz, M.A. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab 1996; 16: 605-611.
50. Ferriero, D.M., Holtzman, D.M., Black, S.M. & Sheldon, R.A. Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis 1996; 3: 64-71.
51. Zaharchuk, G., Hara, H., Huang, PL., Fishman, MC., Moskowitz, MA., Jenkins, BG. & Rosen, BR. Neuronal nitric oxide synthase mutant mice show smaller infarcts and attenuated apparent diffusion coefficient changes in the peri-infarct zone during focal cerebral ischemia. Magn Reson Med 1997, 37: 170-175.
52. Eliasson, M.J., Huang, Z., Ferrante, RJ., Sasamata, M., Molliver, ME., Snyder, SH. & Moskowitz, MA. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci 1999; 19: 5910-5918.
53. Lee, T.J. Nitric oxide and the cerebral vascular function. J Biomed Sci 2000; 7: 16-26.
54. Higuchi, Y., Hattori, H., Kume, T., Tsuji, M., Akaike, A. & Furusho, K. Increase in nitric oxide in the hypoxic-ischemic neonatal rat brain and suppression by 7-nitroindazole and aminoguanidine. Eur J Pharmacol 1998; 342: 47-49.
55. Dammann, O., Durum, S. & Leviton, A. Do white cells matter in white matter damage? Trends Neurosci 2001; 24: 320-324.
56. Kumral, A. Baskin, H., Gokmen, N., Yilmaz, O., Genc, K., Genc, S., Tatli, MM., Duman, N., Ozer, E. & Ozkan. H. Selective inhibition of nitric oxide in hypoxic-ischemic brain model in newborn rats: is it an explanation for the protective role of erythropoietin? Biol Neonate 2004; 85: 51-54.
57. Nanri, K., Montecot, C., Springhetti, V., Seylaz, J. & Pinard, E. The selective inhibitor of neuronal nitric oxide synthase, 7-nitroindazole, reduces the delayed neuronal damage due to forebrain ischemia in rats. Stroke 1998; 29: 1248-1253.
58. Jiang, M.H., Kaku, T., Hada, J. & Hayashi, Y. 7-Nitroindazole reduces nitric oxide concentration in rat hippocampus after transient forebrain ischemia. Eur J Pharmacol 1999; 380: 117-121.
59. Wada, K., Chatzipanteli, K., Busto, R. & Dietrich, W.D. Role of nitric oxide in traumatic brain injury in the rat. J Neurosurg 1998; 89: 807-818.
60. Itzhak, Y. & Ali, S.F. The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo. J Neurochem 1996; 67: 1770-1773.
61. Moncada, S. & Higgs, E.A. Nitric oxide and the vascular endothelium. Handb Exp Pharmacol 2006; 213-254.
62. Toda, N. & Okamura, T. The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev 2003; 55: 271-324.
63. Melikian, N., Seddon, M.D., Casadei, B., Chowienczyk, P.J. & Shah, A.M. Neuronal nitric oxide synthase and human vascular regulation. Trends Cardiovasc Med 2009; 19: 256-262.
64. Morris, B.J. Stimulation of immediate early gene expression in striatal neurons by nitric oxide. J Biol Chem 1995; 270: 24740-24744.
65. Wang, L.W., Chang, Y.C., Lin, C.Y., Hong, J.S. & Huang, C.C. Low-dose lipopolysaccharide selectively sensitizes hypoxic ischemia-induced white matter injury in the immature brain. Pediatr Res 2010; 68: 41-47.
66. Yemisci, M., Gursoy-Ozdemir, Y., Vural, A., Can, A., Topalkara, K. & Dalkara, T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 2009; 15: 1031-1037.
67. Paxinos, G. & Watson, C., “The rat brain in stereotaxic coordinates: Second Edition”, Academic Press 1986; New South Wales, Australia.
68. Wainwright, M.S., Grundhoefer, D., Sharma, S. & Black, S.M. A nitric oxide donor reduces brain injury and enhances recovery of cerebral blood flow after hypoxia-ischemia in the newborn rat. Neurosci Lett 2007; 415: 124-129.
69. Puka-Sundvall, M., Gajkowska, B., Cholewinski, M., Blomgren, K., Lazarewicz, JW. & Hagberg, H. Subcellular distribution of calcium and ultrastructural changes after cerebral hypoxia-ischemia in immature rats. Brain Res Dev Brain Res 2000; 125: 31-41.
70. Li, J., Wilson, A., Kuruba, R., Zhang, Q., Gao, X., He, F., Zhang, LM., Pitt, BR., Xie, W. & Li, S. FXR-mediated regulation of eNOS expression in vascular endothelial cells. Cardiovasc Res 2008; 77: 169-177.
71. del Zoppo, G.J. & Mabuchi, T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 2003; 23: 879-894.
72. Iadecola, C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol 2010; 120: 287-296.
73. Tu, Y.F., Lu, P.J., Huang, C.C., Ho, C.J. & Chou, Y.P. Moderate dietary restriction reduces p53-mediated neurovascular damage and microglia activation after hypoxic ischemia in neonatal brain. Stroke 2012; 43: 491-498.
74. Garthwaite, J. Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 2008; 27: 2783-2802.
75. Bonnin, P., Leger, PL., Villapol, S., Deroide, N., Gressens, P., Pocard, M., Renolleau, S., Baud, O. & Charriaut-Marlangue, C. Dual action of NO synthases on blood flow and infarct volume consecutive to neonatal focal cerebral ischemia. Exp Neurol 2012; 236: 50-57.
76. Seddon, M.D., Chowienczyk, P.J., Brett, S.E., Casadei, B. & Shah, A.M. Neuronal nitric oxide synthase regulates basal microvascular tone in humans in vivo. Circulation 2008; 117: 1991-1996.
77. Higuchi, Y., Hattori, H., Kume, T., Tsuji, M., Akaike, A. & Furusho, K. Increase in nitric oxide in the hypoxic-ischemic neonatal rat brain and suppression by 7-nitroindazole and aminoguanidine. Eur J Pharmacol 1998; 342: 47-49.
78. Nagayama, M., Zhang, F. & Iadecola, C. Delayed treatment with aminoguanidine decreases focal cerebral ischemic damage and enhances neurologic recovery in rats. J Cereb Blood Flow Metab 1998; 18: 1107-1113.
79. Huang, Z., Huang, PL., Ma, J., Meng, W., Ayata, C., Fishman, MC. & Moskowitz, MA. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 1996; 16: 981-987.
80. Lin, H.Y., Wu, C.L. & Huang, C.C. The Akt-endothelial nitric oxide synthase pathway in lipopolysaccharide preconditioning-induced hypoxic-ischemic tolerance in the neonatal rat brain. Stroke 2010; 41: 1543-1551.
81. Gidday, J.M., Shah, AR., Maceren, RG., Wang, Q., Pelligrino, DA., Holtzman, DM. & Park, TS. Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab 1999; 19: 331-340.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw