進階搜尋


下載電子全文  
系統識別號 U0026-1107201320231500
論文名稱(中文) 應用微波電漿化學氣相沉積法合成奈米鑽石之非揮發性電阻式記憶體
論文名稱(英文) Nonvolatile Resistive Random Access Memory Based on Microwave Plasma Chemically Vapor Deposited Nanodiamond Films
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 101
學期 2
出版年 102
研究生(中文) 盧麒竣
研究生(英文) Chi-Chun Lu
學號 Q16004016
學位類別 碩士
語文別 英文
論文頁數 113頁
口試委員 指導教授-曾永華
口試委員-洪茂峰
口試委員-張守進
口試委員-劉志毅
中文關鍵字 電阻式記憶體  奈米鑽石  微波電漿化學氣相沉積 
英文關鍵字 Resistive random access memory (RRAM)  Nanodiamond  Microwave plasma vapor deposition (MPCVD) 
學科別分類
中文摘要 在本論文中, 我們成功地將微波電漿化學氣相沉積法合成之奈米鑽石薄膜應用於非揮發性電阻式記憶體中之介電質層並且以銅及鎢分別作為上、下電極,所以其結構為銅-奈米鑽石薄膜-鎢。藉由外部提供電場,此記憶體可在其高、低阻態間來回切換而其高、低阻態之電流值可經由一個較小的讀取電壓得知。另外,指叉式之上、下電極結構也被用來呈現此記憶體。
此應用奈米鑽石薄膜之記憶體具有大的開關電流值比( >100000)、40次以上的開關切換次數,而且此記憶體在高、低阻態之電流值分別都可以保持長時間的穩定性( >10000 秒)。另外,在本論文中,藉由電壓電流特性及二次離子質譜儀之分析,此記憶體之導通操作以及其高、低阻態切換機制也被討論與研究,由電壓電流特性分析可得之,此記憶體在其高、低阻態之導通機制分別為空間電荷侷限電流(Space charge limit current)理論及歐姆定律,而此現象也可說明此記憶體之開關特性是由燈絲傳導機制(Filamentary conduction)所造成。而二次離子質譜儀分析之結果更可以說明此記憶體之高、低阻態切換機制為燈絲傳導機制。
奈米鑽石薄膜擁有良好的化學惰性、散熱性以及低的銅之固體溶解度,因此,在奈米鑽石薄膜中,銅離子藉由電場形成之燈絲導通路徑非常穩定,所以奈米鑽石薄膜很適合作為電阻式記憶體之介電質層,在未來,此奈米鑽石電阻式記憶體可以應用其良好的特性,操作於艱困的環境中。
英文摘要 In this thesis, the nanodiamond thin film, deposited by the microwave plasma vapor deposition (MPCVD) system, is utilized as the dielectric film for the fabrication of resistive random access memory (RRAM) with copper (Cu) layer as top electrodes and the tungsten (W) counter electrodes. The RRAM with the metal-insulator-metal (MIM) structure of Cu/Nanodiamond/W is switched between the high resistance state (HRS; OFF state) and its low resistance state (LRS; ON state) by the external electrical stimulation. The HRS or LRS can be probed by a low applied voltage across two counter electrodes and measure its conduction current.
It is observed that the Cu/Nanodiamond/W structure shows good performance with the ON/OFF conduction current ratio >100000 and retention time >10000 s; switching cycle times is up to 40. Besides, the conduction and resistive switching mechanism are also researched and discussed in the thesis. For the conduction mechanism, the trap-controlled space charge limit current (SCLC) might dominate the conduction current of the HRS while the conduction current of the LRS might be dominated by the Ohmic conduction. As for the resistive switching mechanism, the results of secondary ion mass spectrometry (SIMS), it is the food agreement that the switching mechanism might be the filamentary model.
Nanodiamond is known to be chemically inert, good heat dissipation and has very low solid solubility in copper. That is, the conductive filamentary channel composed of copper ion is very stable in the nanodiamond thin film. It is, therefore, a suitable dielectric material to fabricate the RRAM for harsh environments.
論文目次 中文摘要 I
ABSTRACT II
致謝 III
CONTENTS IV
TABLE CAPTIONS VII
FIGURE CAPTIONS VIII
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 DIAMONDS 2
1.2.1 INTRODUCTION TO DIAMOND 2
1.2.2 CHARACTERISTICS OF DIAMOND 7
1.2.3 DIAMOND APPLICATIONS 19
1.3 NONVOLATILE MEMORIES FOR NEXT GENERATION 24
1.3.1 INTRODUCTION TO MEMORIES 24
1.3.2 PHASE CHANGE MEMORY 27
1.3.3 FERROELECTRIC RANDOM ACCESS MEMORY 29
1.3.4 MAGNETORESISTIVE RANDOM ACCESS MEMORY 30
1.3.5 RESISTIVE RANDOM ACCESS MEMORY 30
CHAPTER 2 BACKGROUND 31
2.1 CHEMICALLY VAPOR DEPOSITED DIAMOND FILMS 31
2.1.1 THEORY AND MECHANISM OF CHEMICAL VAPOR DEPOSITION 32
2.1.2 GROWTH OF CVD DIAMOND FILMS 33
2.1.3 INTRODUCTION TO CVD DIAMOND FILMS 35
2.1.4 GASES FOR CHEMICALLY VAPOR DEPOSITED REACTION 38
2.1.5 DOPED CVD DIAMOND FILMS 40
2.2 RESISTIVE RANDOM ACCESS MEMORY 41
2.2.1 TYPICAL STRUCTURE OF RRAM 41
2.2.2 RESISTIVE SWITCHING CURRENT-VOLTAGE CURVES OF RRAM 42
2.2.3 CONDUCTION MECHANISMS OF RRAM 43
2.2.4 RESISTIVE SWITCHING MECHANISMS OF RRAM 45
2.3 CARBON-BASED RESISTIVE RANDOM ACCESS MEMORY 46
CHAPTER 3 INSTRUMENTS 47
3.1 MICROWAVE PLASMA CHEMICAL VAPOR DEPOSITION SYSTEM 47
3.2 RADIO FREQUENCY SPUTTERING SYSTEM 48
3.3 RAMAN SPECTROSCOPE SYSTEM 49
3.4 ATOM FORCE MICROSCOPE 49
3.5 SCANNING ELECTRON MICROSCOPE 50
CHAPTER 4 EXPERIMENTAL 51
4.1 INTRODUCTION 51
4.2 GROWTH PROCEDURE OF NANODIAMOND THIN FILMS 52
4.2.1 CHOICE AND STANDARD CLEAN PROCESS FOR THE SUBSTRATES 52
4.2.2 STANDARD DIAMOND SEEDING PROCESS 54
4.2.3 STANDARD DEPOSITING PROCESS OF NANODIAMOND THIN FILMS 56
4.3 NANODIAMOND BASED RESISTIVE RANDOM ACCESS MEMORY PROCEDURE 60
4.3.1 DEMONSTRATING PROCESS OF THE RESISTIVE RANDOM ACCESS MEMORY DEVICES 60
4.3.2 PROCESS OF THE BOTTOM ELECTRODE 62
4.3.3 PROCESS OF THE NANODIAMOND THIN FILMS AS THE DIELECTRIC THIN FILMS 64
4.3.4 PROCESS OF THE TOP ELECTRODES 66
CHAPTER 5 RESULTS AND DISCUSSIONS 68
5.1 PROMOTION OF NUCLEATION DENSITY 68
5.2 PHYSICAL ANALYSIS OF NANODIAMOND THIN FILMS 71
5.2.1 ANALYZING TO NANODIAMOND THIN FILMS DEPOSITED FOR DIFFERENT TIME 72
5.3 RESISTIVE SWITCHING CHARACTERISTICS OF NANODIAMOND BASED RRAM. 87
5.3.1 ELECTRICAL PROPERTY OF NANODIAMOND BASED RRAM 88
5.3.2 RETENTION CHARACTERISTICS AT HIGH TEMPERATURE 92
5.3.3 SWITCHING AND CONDUCTION MECHANISMS OF NANODIAMOND-RRAM 97
5.4 NANODIAMOND-RRAM WITH FINGER ELECTRODES 103
CHAPTER 6 CONCLUSIONS AND FUTURE WORK 108
6.1 CONCLUSIONS 108
6.2 FUTURE WORK 109
REFERENCE 110
參考文獻 [1] Changwei Chen, et al. “RF MEMS Capacitive Switch with Leaky Nanodiamond Dielectric Film,” Diamond and Related Materials 20, 4, 546-550, 2011.
[2] Vescan, et al. “High-Temperature, High-Voltage Operation of Pulse-Doped Diamond MESFET,” IEEE Electron Device Letters, 18, 222-224, 1997.
[3] David Saada, Diamond and graphite properties, 2000.
[4] http://www.hk-phy.org/atomic_world/carbon/carbon01_c.html.
[5] Davis, R. F, et al. “Diamond films and coatings: development, properties, and applications,” Park Ridge, N.J., Noyes Pub, 1993.
[6] Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M., and Wentorf, R. H. Jr., Nature 184:1094, 1959.
[7] Field, J. E. “The Properties of diamond,” London; New York, Academic Press, 1979.
[8] Davies, G. “Diamond,” Bristol, A. Hilger, 1984.
[9] Wilks, J. and E. Wilks. “Properties and applications of diamond,” Oxford; Boston, Butterworth-Heinemann, 1991.
[10] Gruen, D. M., O. A. Shenderova, et al. “Synthesis, properties, and applications of ultrananocrystalline diamond,” Dordrecht; New York, Springer, 2005.
[11] Shenderova, O. A. and D. M. Gruen. “Ultrananocrystalline diamond: synthesis, properties, and applications,” Norwich, N.Y., William Andrew Pub, 2006.
[12] Nemanich, R. J., Shroder, R. E., Glass, J. T. and Lucovsky, G., Proc. of the 19th Int. Cord. on the Physics of Semiconductors, (W. Zawadzki, ed.) p 515, Inst. Of Physics, Polish Acad. of Science, Warsaw, 1966.
[13] J. Hirmke, et al. “Diamond single crystal growth in hot filament CVD,” Diamond and Related Materials, 15, 536–541, 2006.
[14] Frondel, C., U.B. Marvin, “Lonsdaleite, a new hexagonal polymorph of diamond,” Nature 214, 587 - 589, 1967.
[15] Hiroyuki Kadota, et al. “Texture and Grain Size Investigation in the Copper Plated Through-Silicon via for Three-Dimensional Chip Stacking Using Electron Backscattering Diffraction,” Electrochemical and Solid-State Letters, 14 (5), D48-D51, 2011.
[16] Chris J.H. Wort, Richard S. Batmer, materialstoday, JAN-FEB, 2008.
[17] Koji Kobashi, “Diamond Films Chemical Vapor Deposition for Oriented and Heteroepitaxial Growth,” Elsevier Ltd, ISBN: 978-0-08-044723-0, 2005.
[18] W. W. Zhuang, et al. “ Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM),” in IEDM Tech. Dig.,193-196, 2002.
[19] K. Kim, et al. “the future prospect of nonvolatile memory,” VLSI-TSA-Tech., 2005.
[20] Stefan Lai, et al. “OUM- a- 180 nm Nonvolatile Memory Cell Element Technology for Stand Alone and Embedded Application,” in IEDM Tech. Dig., 803-806, 2001.
[21] Takashi Nakamura, et al. “Fabrication Technology of Ferroelectric Memories,” Jpn. J. Appl. Phys. 37, 1325-1327, 1998.
[22] J. Slaughter, et al. “High Speed Toggle MRAM with MgO-Based Tunnel Junctions,” In IEDM Tech. Dig., Washington, D.C., 2005.
[23] Rainer Waser, et al. “Redox-Based Resistive Switching Memories–Nanoionic Mechanisms, Prospects, and Challenges,” Adv. Mater., 21, 2632–2663, 2009.
[24] S. Yugo, et al. “Generation of diamond nuclei by electric field in plasma chemical vapor deposition,” Appl. Phys. Lett., 58, 1036–1038, 1991.
[25] Gluche P, et al. Diamond and Related Mater., 7, 779, 1998.
[26] Ohtsuka. K, et al. Jpn. J. Appl. Phys., 36, L1214, 1997.
[27] P. Doppelt, et al. “Chemical vapor deposition of copper for IC metallization: precursor chemistry and molecular structure,” MRS Bulletin, 41, 1994.
[28] Y. Gurbuz, et al. “Diamond semiconductor technology for RF device applications,” Solid-State Electronics, 49, 1055-1070, 2005.
[29] H. Liu, et al. “Studies on nucleation process in diamond CVD: an overview of recent developments,” Diamond and Related Materials, 4, 1173-1188, 1995.
[30] X. Xiao, et al. “Low temperature growth of ultrananocrystalline diamond,” Journal of Applied Physics, 96, 2232-2239, 2004.
[31] P. E. Pehresson, et al. Diamond Films And Coatings: Noyes Publications, 1993.
[32] D. Li, D. Zuo, et al. “Effects of methane concentration on diamond spherical shell films prepared by DC-plasma jet CVD,” Solid State Ionics, 179, 1263-1267, 2008.
[33] V. Sumant, et al. “Large Area Low Temperature Ultrananocrystalline Diamond (UNCD) Films and Integration with CMOS Devices for Monolithically Integrated Diamond MEMS/NEMS-CMOS Systems,” Proc. of SPIE, 7318, 731817, 2009.
[34] V. Sumant, et al. “Ultrananocrystalline and Nanocrystalline Diamond Thin Films for MEMS/NEMS Applications,” MRS Bulletin, 35, 281-288, 2010.
[35] D. D., et al. “A review of nucleation, growth and low temperature synthesis of diamond thin films,” International Materials Reviews, 52, 29-64, 2007.
[36] Williams, et al. “Growth, electronic properties and applications of nanodiamond,” Diamond and Related Materials, 17, 1080-1088, 2008.
[37] D. Zhou, et al. “Control of diamond film microstructure by Ar additions to CH[sub 4]/H[sub 2] microwave plasmas," Journal of Applied Physics, 84, 1981-1989, 1998.
[38] Chih-Yang Lin, et al. “Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices,” IEEE Electron Device Lett. 28(5), 366, 2007.
[39] T. Sakamoto, et al. “Nanometer-scale switches using copper sulfide,” Appl. Phys. Lett. 82, 3032, 2003.
[40] Shuang Gao, et al. “Dynamic Processes of Resistive Switching in Metallic Filament-Based Organic Memory Device,” J Phys. Chem 116, 17955-17959, 2012.
[41] Sung Hyun Jo, et al. “CMOS Compatible Nanoscale Nonvolatile Resistance Switching Memory,” Nano Lett. 8(2), 392, 2008.
[42] Akihito Sawa. “Resistive Switching in Transition Metal Oxides,” materialstoday, 11, 28, 2008.
[43] Chen, et al. “Non-volatile resistive switching for advanced memory application,” in IEDM Tech. Dig., 746-749, 2005.
[44] F. Zhuge, et al. “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96, 163050, 2010.
[45] Kyung Min Kim, et al. “Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films,” Appl. Phys. Lett. 91, 012907, 2007.
[46] Byungin cho, et al. “Direct Observation of Ag Filamentary Paths in Organic Resistive Memory Devices,” Adv. Funct. Mater. 21, 3976-3981, 2011.
[47] Franz Kreupl, et al. “Carbon-Based Resistive Memory,” present at IEDM 2008.
[48] Pinggang Peng, et al. “Resistive switching behavior in diamond-like carbon films grown by pulsed laser deposition for resistance switching random access memory application,” J. Appl. Phys. 111,084501, 2012.
[49] Yueh-chieh Chu, et al. “Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer,” J. Appl. Phys. 111,124328, 2012.
[50] Y. Tzeng and Y.K. Liu, “Diamond CVD by microwave plasmas in argon-diluted methane without or with 2% hydrogen additive,” Diamond and Related Materials 14, 3-7, 261-265, 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw