進階搜尋


 
系統識別號 U0026-1107201120215100
論文名稱(中文) 噴射引擎機車使用酒精汽油為燃料之氣態污染物排放特徵研究
論文名稱(英文) Gaseous Air Pollutant Emissions from Fuel Injection Motorcycle by Using Ethanol-Blend Gasoline
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 王薏婷
研究生(英文) Yi-Ting Wang
學號 p56984205
學位類別 碩士
語文別 中文
論文頁數 167頁
口試委員 指導教授-蔡俊鴻
口試委員-鄭福田
口試委員-張能復
口試委員-江鴻龍
中文關鍵字 四行程噴射引擎機車  酒精汽油  空氣污染物  有機性有害污染物  臭氧生成潛勢 
英文關鍵字 Fuel-injection engine motorcycle  ethanol-blended gasoline  gaseous pollutants  ozone-forming potential  organic air toxics 
學科別分類
中文摘要 本研究探討四行程噴射引擎機車,使用不同比例酒精汽油與95市售無鉛汽油為燃料所致引擎尾氣排放污染物於無觸媒排氣管條件下之差異。解析項目包括:法定污染物、揮發性有機污染物、醛酮類化合物及有機性有害污染物(苯、甲苯、乙苯、二甲苯、甲醛及乙醛),並探討臭氧生成潛勢(OFP)、污染物等效減量值(EEA)及有機性有害空氣污染物之潛在影響。測試油品分別為酒精含量15 %(E15)、20 % (E20)、30 %(E30)以及95市售無鉛汽油。測試機車選用同廠牌同款之兩部新車,為國內使用數目前五名引擎族之車輛,行駛型態為ECE冷啟動,於機車動力計依國內標準測試程序進行。
研究結果顯示,四行程噴射引擎機車使用酒精汽油CO與THC排放係數相較使用95市售油皆為減量,減量效果隨酒精添加比例增加而增加,最大減量分別為CO 14 %與THC 26 %;NOx排放係數則無明顯減量。油品成分與法定污染物排放係數相關性分析顯示,CO與THC排放係數與油品含氧量呈高度負相關,與芳香烴及苯含量呈高度正相關。使用酒精汽油增加燃油油耗,且隨著酒精添加比例增加而增加,E30油耗約增加4.5 %。
與95市售油比較,四行程噴射引擎機車使用酒精汽油為燃料,Total VOCs排放係數隨酒精添加比例增加而降低,烷類、烯類及芳香烴排放係數亦呈降低趨勢;醛酮化合物排放係數呈相反趨勢,且隨著酒精含量增加而增加,原因為醇類燃燒易生成甲醛及乙醛所致。油品成分與VOCs排放係數相關性分析顯示,烷類、烯類及芳香烴排放係數與油品含氧量呈高度負相關,但與芳香烴及苯含量呈高度正相關;醛酮化合物排放係數與油品含氧量呈高度正相關,與芳香烴及苯含量呈高度負相關。
有機性有害空氣污染物分析結果顯示,噴射引擎機車使用酒精汽油為燃料對BTEX排放係數皆呈減量,且隨著酒精添加比例增加而增加減量效果。使用酒精汽油則對甲醛及乙醛排放呈現增量,甲醛排放增加約68 %,乙醛排放增加約330 %。相關性分析顯示,BTEX排放係數與油品含氧量呈高度負相關,但與芳香烴及苯含量呈高度正相關;甲醛及乙醛排放係數與油品含氧量呈高度正相關,與芳香烴及苯含量呈高度負相關;。
臭氧生成潛勢結果顯示,使用酒精汽油為燃料之四行程噴射引擎廢氣排放約降低14~27 % 總臭氧生成潛勢(烷烴+烯烴+芳香烴),但增加醛酮類所致臭氧生成潛勢約51~170 %。
使用酒精汽油為燃料可降低BTEX的排放,因而降低致癌性權重;但導致甲醛及乙醛排放增加,提高急性危害與慢性危害權重。
整體而言,四行程噴射引擎機車使用酒精汽油為燃料,對排放廢氣之法定污染物(CO、THC)及揮發性有機污染物有改善效果,但造成甲醛及乙醛生成量增加,對民眾健康潛在危害性產生影響。
英文摘要 This study investigated the effects of ethanol-blended gasoline, with various oxygen contents, on air pollutant emissions from four-stroke fuel-injection motorcycle without catalyst. Three test fuels, which contain 15% (E15), 20% (E20), and 30% (E30) of ethanol by volume and with the fuel oxygen content of 5.35, 7.4 and 10.06 by weight, were applied to power the test motorcycle on a chassis dynamometer respectively. Ethanol was used as oxygenated additive in test fuels. The commercial unleaded gasoline was used as reference fuel in which methyl ter-butyl ether (MTBE) was used as the additive with oxygen content 2.01% (by weight). The target pollutants investigated in this study including CO, NOx, THC, volatile organic compounds(VOCs), carbonyls, and six species of organic air toxics (benzene, toluene, ethylbenzene, xylene, formaldehyde, and acetaldehyde). Two motorcycles, with engine displacement of 125 cm3, were tested on a chassis dynamometer by ECE test cycle.
The results showed that the emissions of CO and THC from ethanol-gasoline blends decreased with increasing oxygen content in test fuels. Particularly the E30 showed the highest emission reduction compared to the reference fuel. These results indicated that addition of ethanol in gasoline can enhance the combustion efficience and reduced the emission of air pollutants. However the emission of NOx did not change significantly. Emissions of total VOCs, alkanes, alkenes, and aromatics groups also reduced while using ethanol-gasoline blend as fuel. Emissions of carbonyl group increased about 1.2 times from E30 as compared to RF. High emissions of acetaldehyde contributed high emission of carbonyl group while using ethanol blend. The results of air toxics emissions showed a reduction potential on benzene, toluene, ethylbenzene, and xylene, but with increasing emissions of formaldehyde and acetaldehyde.
The ozone-forming potential(OFP) of total VOC in the engine exhaust reduced, as using ethanol-gasoline blends, 14 %, 25 %, and 27 % for E15, E20 and E30,respectively. However, the OFP of carbonyls in engine exhaust increased about 51~171%. Higher emissions of formaldehyde and acetaldehyde made higher OFP of the emissions while using ethanol blend.
The results of toxicity assessment showed that the carcinogenic effects of the exhaust from ethanol-blended fuels were lower than that of RF. The results also showed that emission from E30 had the highest impact on total acute-effect and chronic-effect, followed by E20, E15, and RF.
In summary, emissions of criteria air pollutants and VOCs may decrease while using ethanol-gasoline blends as fuel to power the motorcycle E30 showed a higher emission reduction potential than those from E15 and E20. However, E30 also had the higher emission of formaldehyde and acetaldehyde which made the emissions in the exhaust with higher adverse health impact.
論文目次 中文摘要 I
ABSTRACT III
誌謝 V
目錄 VII
表目錄 IX
圖目錄 XI
第一章 前言 1-1
1-1研究緣起 1-1
1-2研究目標 1-2
第二章、文獻回顧 2-1
2-1 移動車輛燃料組成特性與管制標準 2-1
2-2 酒精汽油特徵與應用 2-15
2-3 影響機車排氣之因素 2-23
2-4 機車引擎尾氣污染物排放特性 2-31
2-5 移動源排放污染物之光化反應性 2-41
第三章、研究方法 3-1
3-1 研究架構 3-1
3-2 篩選測試車與油品摻配設計 3-3
3-3 車體動力計操作與排氣採樣程序 3-7
3-4 機車引擎尾氣之分析程序及品保品管 3-14
3-5 機車引擎尾氣空氣污染物計算 3-20
第四章、結果與討論 4-1
4-1 酒精汽油對噴射引擎機車排放法定污染物之影響 4-1
4-1-1 法定污染物排放濃度解析 4-1
4-1-2 法定污染物單位里程排放係數解析 4-3
4-1-3 法定污染物單位油耗排放係數解析 4-5
4-1-4 綜合解析 4-7
4-1-5 油品含氧量對油耗及燃燒效率的影響 4-10
4-2 酒精汽油對噴射引擎機車排放氣態有機污染物之影響 4-20
4-2-1 揮發性有機污染物排放濃度及排放係數解析 4-20
4-2-2 醛酮化合物之排放濃度及排放係數解析 4-23
4-2-3 有害空氣污染物排放特徵解析 4-25
4-2-4 小結 4-28
4-3 酒精汽油對噴射引擎機車排放VOCs及醛酮類光化反應趨勢影響 4-38
4-3-1 使用酒精汽油與市售油為燃料對VOCs所致臭氧生成潛勢 4-38
4-3-2 使用酒精汽油與市售油為燃料對醛酮類所致臭氧生成潛勢 4-40
4-3-3 小結 4-41
4-4 噴射引擎機車使用酒精汽油為燃料之廢氣危害性分析 4-48
4-4-1 排放揮發性有機物之致癌性權重分析 4-48
4-4-2 排放揮發性有機物之急性危害指數分析 4-49
4-4-3 排放揮發性有機物之慢性危害指數分析 4-50
4-4-4 小結 4-51
4-5 四行程噴射引擎機車使用不同摻配比例酒精汽油對空氣污染物減量綜合分析 4-54
第五章、結論與建議 5-1
5-1 結論 5-1
5-2 建議 5-5
參考文獻
附件

參考文獻 Al-Hasanm M., 2003. Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission. Energy Conversion and Management 44, 1547-1561.
Andrade M.F., Ynoue R.Y., Harley R., 2003. Ozone Modeling in an Ethanol-, Gasoline- and Diesel-Fuel Environment: the Metropolitan Area of São Paulo, Brazil. A&WMA’s 96th Annual Conference & Exhibition June 22-26.
AQIRP, 1997. Auto/Oil Air Quality Improvement Research Program: Program Final Report. Coordinating Research Council, Atlanta, GA.
Atkinson R., 1989. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. Journal of Physical and Chemical 1, 1-246.
Atkinson R., 1990. Gas-phase tropospheric chemistry organic compounds: a review. Atmospheric Environment 24 (1), 1-41.
Bell A., 2006. The Effect of Fuel Formulation on the Exhaust Emissions of Spark Ignition Engines. Doctor Dissertation, The University of Stellenbosch, South Africa.
Bielaczyc P., Merkisz J., 1997. Exhaust emission from passenger cars during engine cold start and warm-up. SAE Paper No. 970740.
Bovonsombat P., Boonchanta P., Hohn, G., 1998. Field Test of Two-Stroke Catalytic Converter in Thailand. International Fall Fuels and Lubricants Meeting and Exposition, San Francisco, California, October 19-22, 1998.
Carter W.P.L., 1994. Development of ozone reactivity scales for volatile organic compounds. Journal of Air & Waste Management Association 44, 881-899.
CONCAWE, 2001, Motor Vehicle Emission Regulations and Fuel Specifications – Part 1 Summary and annual 1999/2000 update , Report No. 1/01
Correa S.M., Martins E., Arbilla G., 2003. Formaldehyde and acetaldehyde in a high traffic street of Rio de Janeiro, Brazil. Atmospheric Environment 37:23-39.
Chan C.C., Nien C.K., Tasi C.Y., Her G.R., 1995. Comparison of tail pipe emissions from motorcycle and passenger cars. Journal of Air & Waste Management Association 45 (2), 116-124.
Chevron Products Company, 2003. Motor Gasolines Technical Review, San Ramon, USA. www.chevron.com/products/prodserv/fuels/
Derwent R.G., 1996. Photochemical ozone creation potentials for a large number of reactive hydrocarbons under european conditions. Atmospheric Environment 30, 181-199.
Dimitriades B., 1997. Photochemical smog and solvents. Metal Finishing 95 (5), 55-59
Dockery D.W., Pope C. A., Xu X., Spengler J.D., Ware J. H., Fay M.E., Ferris B.G., Speizer F. E. , 1993. An Association between Air Pollution and Mortality in Six U.S. Cities. New England Journal of Medicine 329 (24), 1753-9.
Encyclopædia Britannica, 2009. Gasoline Engine, Encyclopædia Britannica Online, Retrieved October 07, 2009, from: http://www.britannica.com/EBchecked/topic/226592/gasoline-engine
European Commission(EC), 2003. European Parliament and Council Directive 2003/17/EC
Graham L.A., Belisle S.L., Baas C.L., 2008. Emission from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmospheric Environment 42, 4498-4516.
Heeb N.V., Forss A.M., Weilenmann, M., 2002. Pre- and post-catalyst- fuel-, velocity- and acceleration-dependent benzene emission data of gasoline-driven EURO-2 passenger cars and light duty vehicles. Atmospheric Environment 36, 4745-4756.
He B.Q., Wang J.X., Hao J.M., Yan X.G., Xiao J.H., 2003. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels. Atmospheric Environment 37, 949–957.
Hsieh W.D., Chen R.H., Wu T.L., Lin T.H., 2002. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environment 36, 403-410.
Jia L.W., Shen M.Q., Wang J., Lin M.Q., 2005. Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. Journal of Hazardous Materials 123 (1-3), 29-34.
Jia L.W., Zhou W.L., Shen M.Q., Wang J., Lin, M.Q., 2006. The investigation of emission characteristics and carbon deposition over motorcycle monolith catalytic converter using different fuels. Atmospheric Environment 40, 2002-2010
Kirchstetter, T.W., Singer, B.C., Harley, R.A., 1996. “Impact of oxygenated gasoline use on California light-duty vehicle emissions.” Environmental Science & Technology 30, 661-670.
Knapp K.T., Stump F.D., Tejada S,B., 1998. The effect of ethanol fuel on the emissions of vehicles over a wide range of temperatures. Journal of the Air & Waste Management Association 48, 646-653.
Leong S.T., Muttamara S., Laortanakul P., 2002. Applicability of gasoline containing ethanol as Thailand’s alternative fuel to curb toxic VOC pollutants from automobile emission. Atmospheric Environment 36, 3495-3503.
MacKinven R., Hublin M., 1996. European programme on emissions, fuels and engine technologies – Objectives and design. SAE Technical Paper Series, 961065, Society of Automotive Engineers, Warrendale, PA.
Michael S. et al., 1998. Combustion of fat and vegetable oil derived fuels in diesel engines. Progress of Energy and Combustion Science 24, 125-164.
Mobile Source Air Toxics Technical Report, Grand Parkway Segments E, F-1, F-2, and G, 2006.
http://www.epa.gov/otaq/toxics.htm.
Nan Z., Tan Z. C., 2004. Thermodynamic Investigation on Properties of Gasohol . Energy & Fuels 18, 1032-1037 .
Osman M. M., 1996. The effect of gasoline fuel type on Si engine nitrogen-oxides and carbon monoxide emissions under part-load operating conditions. Fuel Science & Technology International 14 (8), 1065-1095.
Payne-Sturges D.C., Burke T.A., Breysse P., Diener-West M., Buckley T.J., 2004. Personal exposure meets risk assessment: A comparison on measured and modeled exposures and risks in an urban community. Environmental Health Perspectives 112: 589-598.
Petir A., Montagne X., 1993. Effects of the gasoline composition on exhaust emissions of regulated and speciated pollutants. SAE Technical Paper Series, 932681, Society of Automotive Engineers, Warrendale, PA.
Perry R., and Gee, I.L., 1995. Vehicle emissions in relation to fuel composition. Science of The Total Environment 169 (1-3), 149-156.
Poulopoulos S.G., Samaras D.P., Philippopoulos C.J., 2001. Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels. Atmospheric Environment 35, 4399-4406.
Song C.L., Zhang W.M., Pei Y.Q., Fan G.L., Xu G.P., 2006. Comparative effects of MTBE and ethanol additions into gasoline on exhaust emission. Atmospheric Environment 40, 1957-1970.
Schifter, I., Díaz, L., Guzman, E., Lopez-Salinas, E., 2004. Fuel formulation and vehicle exhaust emissions in Mexico. Fuel 83, 2065-2074.
Schuetzle D., Siegl W.O., Jensen T.E., Dearth M.A., Kaiser E.W., Gorse R., Kreucher W., Kulik E., 1994. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs. Environmental Health Perspectives 102 (4), 3-12.
The World Bank, 2000. Improving Urban Air Quality in South Asia by Reducing Emissions from Two-Stroke Engine Vehicles. Washington D.C.
Tsai J.H., Hsu Y.C., Weng H.C., Lin W.Y., Jeng F.T., 2000. Air pollutant emission factors from new and in-use motorcycles. Atmospheric Environment 34(28), 4747-4754.
USEPA 網頁資料a, Reformulated Gasoline - Regulations &Standards, http://www.epa.gov/otaq/rfg_regs.htm.
USEPA 網頁資料b, Mobile Source Air Toxics. http://www.epa.gov/otaq/toxics.htm, EPA420-R-00-023
United States Environmental Protection Agency (USEPA), 1994. Environmental Fact Sheet- Air Toxics from Motor Vehicles. EPA400-F-92-004, Office of Transportation and Air Quality, Washington, DC.
U.S. Department of Energy, 2006. Biodiesel handling and use guideline, DOE/GO-102006-2358, Third edition.
William Coyle, 2007. The Future of Biofuels: A Global Perspective, AMBER WAVES 5 (5).
U.S. EPA, 1999. Blue ribbon panel on oxyenates in gasoline,achieving clean air and clean water, Report 420-R-99-021, Washington, DC,September 15.
Van G.J., Shanks B., Pruszko R., Clements D., Knothe G., 2004. Biodiesel Analytical Methods August 2002-January 2004, National Renewable Energy Laboratory, Subcontractor Report NO. NREL/SR-510-36240.
Weilenmann M., Soltic P., Saxer C., Forss A.M., Heeb N., 2005. Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment 39, 2433-2441.
Wu C.W., Chen R.H., Pu J.Y., Lin T.H., 2004. Atmospheric Environment 38, 7093-7100.
Yao Y.C., Tsai J.H., Chang A.L., Jeng F.T., 2008. Effects of sulfur and aromatic contents in gasoline on motorcycle emissions. Atmospheric Environment 42, 6560-6564.
Yao Y.C., Tsai J.H., Chiang H.L.,2010. Emissions of Organic Air Toxics from a Four-Stroke Motorcycle Using Ethanol-Blended Gasoline. Environmental Engineering Science 28(2), 147-158.
Zervas E., Montagne X., Lahaye J., 2001. C-1-C-5 organic acid emissions from an SI engine: Influence of fuel and air/fuel equivalence ratio. Environmental Science & Technology 35, 2746-2751.
Zervas E., Montagne X., Lahaye J., 2002. Emission of alcohols and carbonyl compounds from a spark ignition engine: Influence of fuel and air-fuel equivalence ratio. Environmental Science & Technology 36(11), 2414-2421.
Zervas E., Montagne X., Lahaye J., 2003. Emissions of Regulated Pollutants from a Spark Ignition Engine Influence of fuel and Air/Fuel Equivalence Ratio. Environmental Science & Technology 37(14), 3232-3238.
Zervas E., Montagn X., Lahaye J., 2004. Influence of fuel and airfuel equivalence ratio on the emission of hydrocarbons from a SI engine. 1. Experimental findings. Fuel 83, 2301-2311.
中國石油公司,液化石油氣與各燃料之特性比較,1993
左峻德,2007,我國發展生質能源產業之可行性,農業生技產業季刊,第九期
沈淑貞,2002,台灣地區車用油特性及其對空氣污染物排放影響之研究,碩士論文,國立台灣大學環境工程研究所
吳榮華,黃乙倫,洪鼎倫,2008,ETBE之國際發展趨勢分析,石油市場雙週報,專題分析報導
洪金火,2007,機車等停對空氣污染排放之影響研究,碩士論文,朝陽科技大學環境工程與管理學系
周欣慧,2008,酒精汽油對不同里程車輛引擎排放氣態污染物影響研究,碩士論文,國立成功大學環境工程研究所
姚永真,2010,其油成分於四行程機車引擎氣態污染物排放特徵及模式研究,博士論文,國立成功大學環境工程研究所
高銘傑,2000,液化石油氣(LPG)四行程機車,碩士論文,中興大學機械工程研究所
徐武軍,2005,"石油化學工業-原料製程及市場"五南圖書出版
黃惠輝,1994,噴油與燃燒技術(一),燃燒季刊,第十期,第12-16頁
黃靖雄,2002年再版,現代低公害省油汽車排氣污染控制技術及安裝置,全華科技圖書出版
陳婉菁(Chen, W.C.), 2002, 機車使用汽醇燃料排放揮發性有機物及臭氧前驅物分析研究, 國立中興大學碩士論文
陳峰毅,2003,不同油品對機車引擎排放多環芳香烴特徵之影響,碩士論文,南台科技大學化學工程研究所
陳英鵬,2003,機車引擎電子燃油噴射控制對引擎性能及廢氣排放之影響,碩士論文,國立雲林科技大學機械工程研究所
陳厚良,2005,替代性燃油-汽醇對機車引擎排放特性之研究,碩士論文,屏東科技大學
陳彥豪、黃郁棻,2007,我國生質酒精推動與科技發展策略介紹,Sci-Tech Policy Review,科技發展政策報導-專題研究
陳憲政,2008,台灣地區公車改裝柴油/天然氣複合然料系統之效益評估,碩士論文,大葉大學機械工程研究所
翁閎政,1998,機車排氣之揮發性有機物特徵及光化反應性研究,碩士論文,國立成功大學環境工程研究所
葉惠芬,2004,冷熱啟動測試機車排放揮發性有機污特徵之差異研究,碩士論文,國立成功大學環境工程研究所
張開駿,2010,汽油含氧量及芳香烴含量對四行程機車排放氣態污染物之影響,碩士論文,國立成功大學環境工程研究所
曾益民,2006,生質酒精汽油之發展,工業技術研究院
薛天山,2009,內燃機,ISBN 978-957-21-6464-8,全華圖書股份有限公司
趙志勇、楊成宗,液化瓦斯汽車-LPG 引擎,全華科技圖書股份有限公司,1995
劉旭崇,2004,二行程、四行程化油器與四行程噴射引擎機車多環芳香烴化合物排放特徵研究之研究
劉育穎,2001,機車排放醛酮類化合物特徵與光化反應性研究,碩士論文,國立成功大學環境工程研究所
謝志強,2009,生質燃料產業發展現況與趨勢,工業技術研究院
羅永祥、魏榮昌、蕭有福,1994,不同成分LPG 為車用燃料之引擎性能及排氣污染研究,石油季刊,第30 卷第2 期
蕭瑞聖,2008,機車原理與機構(增訂本),ISBN 957-18-0114-3,財團法人徐氏文教基金會
鄭福田,2008,機車觸媒轉化器污染控制效能與耐久性評析,行政院國家科學委員會專題研究計畫, NSC97-EPA-M-002-002-
行政院經濟建設委員會,2007,http://www.cepd.gov.tw/m1.aspx?sNo=0009419
行政院環保署移動污染源管制網,http://mobile.epa.gov.tw/index.aspx
交通部統計處,http://www.motc.gov.tw/mocwebGIP/wSite/mp?mp=1
行政院環境保護署,推廣壓縮天然氣低污染大客車相關問題研究簡報,1996年十二月。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw