進階搜尋


下載電子全文  
系統識別號 U0026-1107201114345200
論文名稱(中文) 高血糖對人造栓塞顆粒誘發之缺血性腦中風預後之影響
論文名稱(英文) The influence of hyperglycemia in the prognosis of artificial embolus-induced ischemic stroke
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 99
學期 2
出版年 100
研究生(中文) 蔡銘駿
研究生(英文) Ming-Jun Tsai
學號 s5892106
學位類別 博士
語文別 英文
論文頁數 98頁
口試委員 指導教授-郭余民
召集委員-許桂森
口試委員-李宜堅
口試委員-黃耀斌
口試委員-林志隆
中文關鍵字 小間隙腦中風  高血糖  chitin/PLGA 微粒  Gelucire微脂粒 
英文關鍵字 lacunar stroke  hyperglycemia  chitin/PLGA microparticles  Gelucire lipid microparticles 
學科別分類
中文摘要 缺血性腦中風仍缺乏有效的治療方法。小間隙腦中風約佔缺血性腦中風之三成,其臨床症狀和預後與其他缺血性腦中風並不相同。雖然糖尿病已知會惡化中風的預後及擴大中風梗塞面積。但是糖尿病對小間隙腦中風的影響仍不清楚。栓塞造成約一半的缺血性腦中風,且栓塞可造成任何型態的缺血性腦中風,其中包括小間隙缺血性腦中風。然而,因為栓塞所造成的梗塞不易預期,故很少動物模式被成功開發。本研究的第一部分將放在小間隙腦中風大鼠模式的開發。首先,我們嘗試以chitin/PLGA混製顆粒來誘發缺血性腦中風,因為chitin/PLGA混製顆粒具有良好的生物相容性,及快速膨脹有利於迅速堵塞血管的特性。我們將顆粒依照直徑大小(從38-45微米到255-350微米)區分為10種族群;然後將各種大小的顆粒,分別經頸外動脈朝頸總動脈的方向注入,來誘發缺血性腦中風。我們發現不論注入何種大小的顆粒,都會導致注入側腦部血流迅速降低,對側則只有小量下降。不同於其他族群,直徑大小在75-90微米的顆粒可造成單一或散在性的單獨梗塞,其梗塞區域多數侷限在皮質下,且其梗塞面積、位置、及形狀類似人類之小間隙性腦中風。接著,我們另外採用脂質顆粒(Gelucire脂質33/01及Gelucire脂質43/01混製顆粒)來誘發缺血性腦中風;此乃取其具快速崩散與良好生物相容性的優點。在直徑大小75-90微米的脂質顆粒注入後,同側腦部血流迅速降低,但約在一小時內腦部的血流就逐漸恢復。我們在脂質顆粒注入後,立即觀察中風症狀,並依照中風症狀完全恢復的時間,分為4個族群,分別是小於5小時、5-24小時、24-48小時、與大於48小時。結果發現,中風症狀小於5小時內完全恢復的組別,偵測不到梗塞區域;5到48小時完全恢復的組別,其梗塞面積很小(<20 mm3);大於48小時才恢復的組別,其梗塞面積明顯增大(>100 mm3),且其梗塞腦區主要是皮質區。接下來,本研究的第二部份是利用所開發之chitin/PLGA小間隙腦中風大鼠模式來研究糖尿病對小間隙腦中風的影響。我們同時開發栓塞性的瀰漫性腦梗塞當作比較。我們利用腹腔注射streptozotocin來誘導高血糖(急性:中風發生前三天; 慢性:中風發生前一個月)。結果發現,急性高血糖惡化瀰漫性腦梗塞的梗塞面積,且血糖的濃度與梗塞的面積呈正相關。相反的,急性高血糖不但降低小間隙腦中風的梗塞面積,還改善了中風症狀;血糖濃度也與梗塞面積呈負相關。相似於急性高血糖的處理,慢性高血糖也改善瀰漫性腦梗塞之梗塞面積及中風症狀。總結本研究,我們發展出一個新穎性的栓塞性小間隙腦中風的大鼠動物模式;並且利用此一動物模式,我們發現高血糖會惡化瀰漫性腦梗塞的預後,但卻改善小間隙腦中風的預後。
英文摘要 Ischemic stroke still lacks effective therapy. Lacunar stroke accounts for about one third of total ischemic stroke; the clinical symptoms and the prognosis of lacunar stroke are different from other types of ischemic stroke. Hyperglycemia has been associated with poor outcome and expansion of the infarct size during ischemic stroke. However, the effect of hyperglycemia on lacunar stroke is still unclear. Embolism is responsible for half of cerebral infarction. Embolism can result in any type of ischemic stroke including lacunar infarct. However, few animal models were developed due to the unpredictability of the embolus-induced infarcts. In the first part of this study, we aim to develop an animal model of lacunar infarct. Initially, we manufactured artificial embolic particles by blending chitin and PLGA for their good biocompatibility and rapid hydration expansion property. We subdivided the chitin/PLGA microparticles into 10 size groups (from 38-45 μm to 255-350 μm) and injected them through ECA toward the bifurcation of CCA in the rat. Reduced blood flow of the ipsilateral hemisphere was evident immediately after injection. Particle75-90 μm induced single or sparse isolated infarcts, mainly located in the subcortical region, and the infarct size, location and shape of this model resembled lacunar stroke in the human being. We also manufactured artificial embolic particles by mixing Gelucire lipid 33/01 and Gelucire lipid 43/01 for their good ability of rapid degradation and good biocompatibility. Reduced blood follow of the ipsilateral hemisphere was evident and quickly restored within 1 h after lipid particle75-90 μm injection. By observing the behavior immediately after stroke induction, we divided the animals into four groups according to their full recovery times: 0-5 h, 5-24 h, 24-48 h, and > 48 h. The results showed that the infarct volume was below detection when neurologic deficit fully recovered within 5 h; tiny infarct (< 20 mm3) was detected when neurologic deficit recovered within 48 h. However, the infarct volumes were significantly enlarged (>100 mm3) in the rats whose residual neurologic defect remained detectable 48 h after the onset of stroke. Furthermore, the infarct area mainly located in cortex. In the second part of this study, we used the developed chitin/PLGA model to test the influence of hyperglycemia on lacunar stroke. A model of diffuse infarction by embolization was also developed. Hyperglycemia was induced by IP injection of streptozotocin before inducing lacunar stroke (acute: 3 days before stroke; chronic: one month before stroke). We found that acute hyperglycemia deteriorated cerebral infarct in non-lacunar stroke when compared with controls; the levels of serum glucose positively correlated to infarct volume. On the contrary, acute hyperglycemia not only reduced the infarct volume, but also lessened the neurologic symptoms in lacunar stroke; a negative correlation between glucose level and infarct volume was evident. Likewise, chronic hyperglycemia also reduced the infarct volumes and improved neurologic defect in diffuse infarction when compared with controls. In conclusion, we have developed a novel animal model for lacunar stroke; by adopting this model, we found that hyperglycemia aggravated the outcome of diffuse infarction, yet improved the outcome of lacunar stroke.
論文目次 考試合格證明 2
中文摘要 3
English abstract 5
誌謝 7
Contents 9
List of tables 13
List of figures 14
Abbreviation 17
Introduction 19
Materials and methods 29
2.1. Materials 29
2.2. Preparation of Chitin/PLGA Mixed Solution 29
2.3. Preparation of Chitin/PLGA Microparticles 29
2.4. Scanning Electronic Microscopy (SEM) 30
2.5. Swelling Rate of Chitin/PLGA Microparticles 30
2.6. Preparation of Gelucire lipid microparticles for transient ischemic attack 31
2.7 in vitro characterization of Gelucire lipid micrcoparticle 32
2.8. Animal Preparation 32
2.9. Induction of hyperglycemia 34
2.10. Laser Doppler Instrument for monitoring Cerebral Blood Flow 34
2.11. Evaluation for Neurologic Deficit 35
2.12. Calculation of Infarction Volume 35
2.13. Statistical analysis 35
Results 37
3.1. Characterization of the chitin/PLGA microparticles 37
3.2. Embolic stroke animal model induced by the chitin/PLGA microparticles 37
3.3. Effect of the sizes of chitin/PLGA microparticles on the severity of stroke 38
3.4. Effect of the sizes of chitin/PLGA microparticles on the single small infarct 39
3.5. Effect of the infarct volumes on the neurologic deficits 40
3.6. Effect of the structure of the chitin/PLGA particles on the embolic stroke 40
3.7. Characterization of the Gelucire lipid microparticles 41
3.8. Embolic stroke animal model induced by the lipid microparticles 41
3.9. The rat models for lacunar stroke and the rat model for diffuse infarction 42
3.10. The blood glucose level and basic physiological parameters in all groups compared with controls 43
3.11. Acute hyperglycemia reduced cerebral infarct as well as improving neurologic defect in lacunar stroke 44
3.12. Acute hyperglycemia deteriorated cerebral infarct as well as expanding the infarct volume of cortex in diffuse infarction 44
3.13. Chronic hyperglycemia improved cerebral infarct as well as neurologic deficit in diffuse infarction 45
Discussion 47
Conclusion 55
References 56
Table 67
Figure 70
Publications 98
參考文獻 1. Baird TA, Parsons MW, Phanh T, Butcher KS, Desmond PM, Tress BM, Colman PG, Chambers BR, Davis SM. Persistent Poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke. 34:2208-2214; 2003.
2. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 17: 1304-1308; 1986.
3. Beech JS, Williams SC, Campbell CA, Bath PM, Parsons AA, Hunter AJ, Menon DK. Further characterisation of a thromboembolic model of stroke in the rat. Brain Res. 895:18-24; 2001.
4. Boiten J. Large striatocapsular infarcts: clinical resentation and pathogenesis in comparison with lacunar and cortical infarcts. Acta Neurol Scand. 86: 298-303; 1993.
5. Bogousslavsky J. The plurality of subcortical infarction. Stroke. 23: 629-631; 1992.
6. Brown AM, Tekkok SB, Ransom BR. Glycogen regulation and functional role in mouse white matter. J Physiol. 549: 501–12; 2003.
7. Cao X, Schoichet MS. Delivering neuroactive molecules from biodegradable microspheres for application in central nervous system disorders. Biomaterials. 20:329-39; 1999.
8. Capes SE, Hunt D, Malmberg K, Pathak P and Gerstein HC. Stress Hyperglycemia and Prognosis of Stroke in Nondiabetic and Diabetic Patients: A Systematic Overview. Stroke. 32:2426-2432; 2001.
9. Carmichael ST. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx. 2(3): 296-409; 2005.
10. Duckrow RB, Beard DC, Brennan RW. Regional cerebral blood flow decreases during chronic and acute hyperglycemia. Stroke. 18:52-58; 1987.
11. Eliaz RE, Kost J. Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J Biomed Mater Res. 50:388-96; 2000.
12. Fuentes B, Castillo J, Jose BS; Leira R, Serena J, Vivancos J, Davalos A, Gil NA, Egido J, Exuperio DT. The prognostic value of capillary glucose levels in acute stroke: The glycemia in acute stroke (GLIAS) study. Stroke. 40:562-568; 2009.
13. Gerriets T, Li F, Silva M.D, Meng X, Brevard M, Sotak CH, Fisher M. The macrosphere model: evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. J. Neurosci. Methods. 122, 201-211; 2003.
14. Gerriets T, Stolz E, Walberer M, Kaps M, Bachmann G, Fisher M. Neuroprotective effects of MK-801 in different rat stroke models for permanent middle cerebral artery occlusion: adverse effects of hypothalamic damage and strategies for its avoidance. Stroke. 34, 2234-2239; 2003.
15. Halkes PHA, Kappelle LJ, Gijn JV, Wijk IV, Koudstaal PJ. Large subcortical infarcts: clinical features, risk factors, and long-term prognosis compared with cortical and small deep infarcts. Stroke. 37:1828-1832; 2006.
16. Harmsen P, Wilhelmsen L, Jacobsson A. Stroke incidence and mortality rates 1987 to 2006 related to secular trends of cardiovascular risk factors in Gothen burg, Sweden. Stroke. 40: 2691-2697; 2009.
17. Horowitz DR. Stroke mechanisms and clinical presentation in large subcortical infarctions. Neurology. 49: 1538-1541; 1997.
18. Hoyte L, Kaur J, Buchan AM. Lost in translation: taking neuroprotection from animal models to clinical trials. Exp. Neurol. 188, 200-204; 2004.
19. Huang NC, Wei J, Quast MJ. A comparison of the early development of ischemic brain damage in normoglycemic and hyperglycemic rats using magnetic resonance imaging. Exp Brain Res. 109: 33−42; 1996.
20. Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide)(PLGA) devices. Biomaterials. 21:2475-90; 2000.
21. James FT, Kari M, Veltkamp R, Jose B, Venkat C, Dindagur N, David CG, Disya R, Charles HT. Cerebrovascular Disorders 5th ed. Philadelphia: Lippincott Williams & Wilkins. 100-130; 1998.
22. Joshi C.N, Jain SK, Murthy PSR. An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts. Brain Res. Brain Res. Protoc. 13: 11-17; 2004.
23. Kiers L, Davis SM, Larkins R, Hopper J, Tress B, Rossiter SC, Carlin J, Ratnaike S. Stroke topography and outcome in relation to hyperglycaemia and diabetes. J Neurol Neurosurg Psychiatry. 55:263–270; 1992.
24. Kitagawa K, Yagita Y, Sasaki T, Sugiura S, Omura-Matsuoka E, Mabuchi T, Matsushita K and Hori M. Chronic mild reduction of cerebral perfusion pressure induced ischemic tolerance in focal cerebral ischemia. Stroke. 36: 2270-2274; 2005.
25. Krugers HJ, Maslam S, Korf J, Jo JM. The Corticosterone Synthesis Inhibitor Metyrapone Prevents Hypoxia/Ischemia-Induced Loss of Synaptic Function in the Rat Hippocampus. Stroke. 31, 1162-1172; 2000.
26. Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature. 263:797-80; 1976.
27. Larsen ML, Hørder M, Mogensen EF. "Effect of long-term monitoring of glycosylated hemoglobin levels in insulin-dependent diabetes mellitus". N. Engl. J. Med. 323 (15): 1021–5; 1990.
28. Li F, Irie K, Anwer MS, Fisher M. Delayed Triphenyltetrazolium Chloride Staining Remains Useful for Evaluating Cerebral Infarct Volume in a Rat Stroke Model. J. Cereb. Blood Flow Metab. 17:1132-1135; 1997.
29. Lindsberg PJ, Kaste M. Thrombolysis for acute stroke. Curr. Opin. Neurol. 16:73-80; 2003.
30. Maarten U, Marcus WK, Roy ES, Patrick CV, Gert-Jan L, Jacques DK. Moderate hyperglycaemia is associated with favourable outcome in acute lacunar stroke. Brain. 130:1626-1630; 2007.
31. Martini SR, Kent TA. Hyperglycemia in acute ischemic stroke: a vascular perspective. J Cereb Blood Flow Metab. 27(3):435-51; 2007.
32. Masiello PC, Broca R, Gross M, Roye M, Manteghetti D, Hillaire-Buys M, Novelli, Ribes G. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes. 47: 224-229; 1998.
33. Mayzel-Oreg O, Omae T, Kazemi M, Li F, Fisher M, Cohen Y, Sotak CH. Microsphere-induced embolic stroke: an MRI study. Magn. Reson. Med. 51:1232-1238; 2004.
34. Mi FL, Lin YM, Wu YB, Shyu SS, Tsai YH. Chitin/PLGA blend microspheres as a biodegradable drug-delivery system: phase-separation, degradation and release behavior. Biomaterials. 23, 3257-3267; 2002.
35. Mi FL, Shyu SS, Lin YM, Wu YB, Peng CK, Tsai YH. Chitin/PLGA blend microspheres as a biodegradable drug delivery system: a new delivery system for protein. Biomaterials. 24:5023-5036; 2003.
36. Michael JQ, Jingna W, Neng CH, Donald GB, Stacy LS, Jose MG, Gilbert RH and Thomas AK. Perfusion Deficit Parallels Exacerbation of Cerebral Ischemia/Reperfusion Injury in Hyperglycemic Rats. Journal of Cerebral Blood Flow & Metabolism. 17: 553–559; 1997.
37. Miyake M, Takeo S, Kaijihara H. Sustained decrease in regional blood flow after microsphere injection in rats. Stroke. 24: 415-420; 1993.
38. Murugan P, Pari L. Effect of Tetrahydrocurcumin on lipid peroxidaiton and lipids in streptozotocin-nicotinamide-induced diabetic rats. Basic & clinical pharmacology & toxicology. 99:122-127; 2006.
39. Muzzarelli RA. Chitin and its derivatives: new trends of applied and research. Carbohydr Polym. 3:52-7; 1993.
40. Niessen F, Hilger T, Hoehn M, Hossmann KA. Differences in clot preparation determine outcome of recombinant tissue plasminogen activator treatment in experimental thromboembolic stroke. Stroke. 34, 2019-2024; 2003.
41. Nikolaos K, Ioanna M, Helen C, Thomas M, Vasilios K et al. Hyperglycaemia in acute ischaemic stroke is associated with an increased 5-year mortality. Age and Ageing. 38: 590–594; 2009.
42. Norrving B. Long-term prognosis after lacunar infarction. Lancet Neurol. 2:238-245; 2003.
43. Parsons MW, Barber PA, Desmond PM, Baird TA, Darby DG, Byrnes G. Acute hyperglycemia adversely affects stroke outcome: a magnetic resonance imaging and spectroscopy study. Ann Neurol. 52: 20–8; 2002.
44. Patricia HA et al. Large subcortical infarcts: Clinical features, risk factors, and lng-term prognosis compared with cortical and small deep infarcts. Stroke. 2006; 37: 1828-1832.
45. Prado R, Ginsberg MD, Dietrich WD, Watson BD & Busto R. Hyperglycemia increases infarct size in collaterally perfused but not end-arterial vascular territories. J Cereb Blood Flow Metab. 8: 186−192; 1988.
46. Sanchez-Abarca LI, Tabernero A, Medina JM. Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia. 36: 321–9; 2001.
47. Schneider AT, Kissela B, Woo D, Kleindorfer D, Alwell K, Miller R, Szaflarski J, Gebel J, Khoury J, Shukla R, Moomaw C, Pancioli A, Jauch E, Broderick J. Ischemic Stroke Subtypes: A Population-Based Study of Incidence Rates Among Blacks and Whites. Stroke. 35:1552-1556; 2004.
48. Siemkowicz E, Hansen AJ: Clinical restitution following cerebral ischemia in hypo-, normo- and hyperglycemic rats. Acta Neurol Scand. 58:l-8; 1978.
49. Small DL, Buchan AM. Animal models. Br. Med. Bull. 56(2), 307-317; 2000.
50. Strbian D, Karjalainen-Lindsberg ML, Kovanen PT, Tatlisumak T, Lindsberg PJ. Mast cell stabilization reduces hemorrhage formation and mortality after administration of thrombolytics in experimental ischemic stroke. Circulation .116: 411-418; 2007.
51. Sturesson C, Carlfors J. Incorporation of protein in PLG-microspheres with retention of bioactivity. J Control Release. 67:171-8. 2000.
52. Uehara T, Tabuchi M, Mori E. Risk factors for silent cerebral infarcts in subcortical white matter and basal ganglia. Stroke. 30: 379-382; 1999.
53. Uyttenboogaart M, Koch MW, Stewart RE, Vroomen PC, Luijckx GJ, Keyser JD. Moderate hyperglycaemia is associated with favourable outcome in acute lacunar stroke. Brain .130: 1626-1630; 2007.
54. Wang CX, Todd KG, Yang Y, Gordon T, Shuaib A. Patency of cerebral microvessels after focal embolic stroke in the rat. J. Cereb. Blood Flow Metab. 21, 413-421; 2001.
55. Wardlaw JM, Farrall A, Armitage PA, Carpenter T, Chappell F, Doubal F, Chowdhury D, Cvoro V and Dennis MS. Changes in background blood-brain barrier integrity between lacunar and cortical ischemic stroke subtypes. Stroke. 39: 1327-1332; 2008.
56. Warlow CP, Dennis MS, Gijn J. van, Hankey GJ, Sandercock PAG. Stroke: A practical guide to management. Blackwell Science. United Kingdom. 81-145 &146-189; 1996.
57. Weih M, Kallenberg K, Bergk A, Dirnagl U, Harms L, Wernecke KM, Einhaupl KM. Stroke. 30:1851-1854; 1999.
58. Wessels T, Rottger C, Jauss M, Kaps M, Traupe H, Stolz E. Identification of embolic stroke patterns by diffusion-weighted MRI in clinically defined lacunar stroke syndromes. Stroke. 36, 757-761; 2005.
59. Yong M, Kaste M. Dynamic of hyperglycemia as a predictor of stoke outcome in the ECASS-II trial. Stroke. 39(10)2749-55; 2008.
60. Zhang Z, Zhang RL, Jiang Q, Raman SB, Cantwell L, Chopp M. A new rat model of thrombotic focal cerebral ischemia. J. Cereb. Blood Flow Metab. 17: 123-135; 1997.
61. Zhang J, Yang ZJ, Klaus JA, Koehler RC and Huang J. Delayed tolerance with repetitive transient focal ischemic preconditioning in the mouse. Stroke. 39:967-974; 2008.
62. Zhengwei C, Yi P, Feng X, Philip GR. Chronic ischemia preferentially causes white matter injury in the neonatal rat brain. Brain research. 898:126-135; 2001.
63. Zivin JA, Fisher M, DeGirolami U, Hemenway CC, Stashak JA. Tissue plasminogen activator reduces neurological deficit after cerebral embolism. Science. 230: 1239-1292; 1985.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw