進階搜尋


 
系統識別號 U0026-1106201415172900
論文名稱(中文) 以透水攝影測量獲取河川底床地形
論文名稱(英文) Acquiring Underwater DTM Using Aerial Imagery
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 102
學期 2
出版年 103
研究生(中文) 洪可芹
研究生(英文) Ke-Chin Hong
學號 P66004031
學位類別 碩士
語文別 英文
論文頁數 48頁
口試委員 指導教授-王驥魁
口試委員-饒見有
口試委員-趙鍵哲
中文關鍵字 航照影像  空中三角測量  水下數值地形模型 
英文關鍵字 underwater digital surface model  aerial imagery  aerial triangulation 
學科別分類
中文摘要 水下數值地形模型是河谷區域的重要資訊,可做為生態與防災研究之應用。利用攝影測量獲取的水下數值地形模型時,會因為光線在水與空氣的接觸面產生折射,造成水下數值地形模型的深度偏差,需要經過改正才能使用,本研究採用經驗法與解析法分別進行修正。經驗法是藉由航測影像與現地測量得到的河床高程建立線性方程式,並利用線性回歸改正水面折射的影響。解析法則是根據折射定律獲取正確的水深以改正水下地形模型。
本研究區域為台灣北部的南勢溪河段,兩岸多為樹林。由空載光達施測時搭載的中像幅相機取得彩色航照影像,像素大小為6.8微米,航高約600公尺,地面解析度為3公分。飛機上的全球定位系統(GPS)與慣性導航系統(IMU)解算相機位置與姿態用以獲取相片初始外方位,進行空中三角測量,產製水下的數值地表模型,並進行水面折射影響的修正。經驗法之精度可達20公分,且在高程方向上沒有明顯的偏移量,優於解析法之精度。最後將經驗法修正後的水下數值模型與空載光達產製的水上數值模型合併,可以獲得完整的數值地表模型,且具有一致的精度(20公分)。
英文摘要 The underwater digital terrain model (DTM) is important in characterizing water-submerged zones. If the DTM is generated by photogrammetry, the effects of refraction at the air/water interface cause the depth-dependent bias in the underwater DTM. The empirical method was used in this study to obtain the correction function based on the regression relation between the elevations of the river bed determined from the aerial image and that obtained from in-situ measurement. This study used a medium frame camera with the pixel size of 6.8 μm and a ground resolution of 3 cm to acquire the high resolution color aerial imagery in northern Taiwan. The position and orientation of the camera exposure position was determined by the onboard global positioning system and inertial measurement unit. The SOCET GXP software was used to perform aerial triangulation. Results were compared with the in-situ measurements obtained by the total station surveying. The underwater DTM with refraction correction of the empirical method has the accuracy about 0.2 m and no evident bias.
論文目次 ABSTRACT I
摘 要 II
致謝 III
Table of contents IV
List of Figures VI
List of Tables IX
Chapter 1 Introduction 1
Chapter 2 Materials and method 7
2.1 Study area 7
2.2 Dataset 9
2.2.1 LiDAR and imagery datasets 9
2.2.2 Ground control points 11
2.2.3 In-situ measurements 12
2.3 Photogrammetry 13
2.4 Refraction correction 14
2.4.1 Single image method 14
2.4.2 Stereo-pair method 16
2.4.3 Empirical method 17
Chapter 3 Results and discussions 19
3.1Correction results of empirical method 19
3.1.1 Correction based on single profile 19
3.1.2 Correction based on two profiles 23
3.1.3 Correction based on three and four profiles 25
3.2 Comparison of three correction methods 30
3.3 Combination of the DTM from LiDAR and photogrammetry 36
Chapter 4 Conclusions 40
Chapter 5 Future outlook 42
Reference 45
參考文獻 Aberle, J., & Nikora, V. (2006) Statistical properties of gravel-bed surfaces. Water Resources Research, 42(11): W11414.
Allouis, T., Bailly, J.S., Pastol, Y., & Le Roux, C. (2010) Comparison of LiDAR waveform processing methods for very shallow water bathymetry using Raman, near-infrared and green signals. Earth Surface Processes and Landforms, 35(6): 640–650.
Beres, M., & Haeni, F.P. (1991) Application of ground-penetrating-radar methods in hydrogeologic studies. Ground Water, 29(3): 375–386.
Bird, S., Hogan, D., & Schwab, J. (2010) Photogrammetric monitoring of small streams under a riparian forest canopy. Earth Surface Processes and Landforms, 35(8): 952–970.
Butler, J.B., Lane, S.N., Chandler, J.H., & Porfiri, K. (2002) Through-water close range digital photogrammetry in flume and field environments. Photogrammetric Record, 17(99): 419–439.
Chandler, J. (1999) Effective application of automated digital photogrammetry for geomorphological research. Earth Surface Processes and Landforms, 24(1): 51–63.
El-Sheimy, N., Valeo, C., & Habib., A. (2005) Digital Terrain Modeling: Acquisition, Manipulation, and Applications. Artech House, Boston, U.S.A.
Fryer, J.G., & Kniest, H.T. (1985) Errors in Depth Determination Caused by Waves in Through-Water Photogrammetry. Photogrammetric Record, 11(66): 745-753.
Guenther, G.C., Cunningham, A.G., LaRocque, P.E., & Reid D.J. (2000) Meeting the accuracy challenge in Airborne Lidar Bathymetry. In: Proceedings of EARSeL-SIG-Workshop LIDAR, 16–17 June 2000, Dresden/FRG, Germany.
Heritage, G., & Large A.R.G. (eds). (2009) Laser Scanning for the Environmental Sciences. Wiley, Chichester, United Kingdom.
Hilldale, R.C., Bountry, J.A., and Piety, L.A. (2008) Using Bathymetric and Bare Earth LiDAR in Riparian Corridors: Applications and Challenges. in Bayer, J.M. and Schei, J.L. eds., PNAMP Special Publication: Remote Sensing Applications for Aquatic Resource Monitoring. Pacific Northwest Aquatic Monitoring Partnership, Cook, Washington, Chapter 4, 27–34.
Hilldale, R.C., & Raff, D. (2008) Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surface Processes and Landforms, 33(5): 773–783. DOI: 10.1002/esp.1575
Hsu, P.H., & Wang C.K. (2012) Acquiring Underwater DEM Using Close-range Photogrammetry and Green-wavelength Terrestrial Laser Scanner. National Cheng Kung University Geomatics Department Master Thesis.
Kinzel, P.J., Nelson J.M., & Wright, C.W. (2006) Monitoring Changes in the Platte River Riparian Corridor with Serial LiDAR Surveys, USGS Fact Sheet 3063.
Lane, S.N., James, T.D., Crowell, M.D. (2000) Application of digital photogrammetry to complex topography for geomorphological research. Photogrammetric Record, 16(95): 793–821.
Lane, S.N., Widdison, P.E., Thomas, R.E., Ashworth, P.J., Best, J.L., Lunt, I.A., Sambrook Smith, G.H., Simpson, C.J. (2010) Quantification of braided river channel change using archival digital image analysis. Earth Surface Processes and Landforms, 35: 971–985.
Landau, H., Vollath, U., & Chen, X. (2002) Virtual Reference Station Systems. Journal of Global Positioning Systems, 1(2): 137–143.
Murase, T., Tanaka, M., Tani, T., Yuko, M., Ohkawa, N., Ishiguro, S., Suzuki, Y., Kayanne, H., & Yamano, H. (2008) A photogrammetric correction procedure for light refraction effects at a two-medium boundary. Photogrammetric Engineering and Remote Sensing 74(9): 1129–1136.
Rieke-Zapp, D.H., & Nearing, M.A. (2005) Digital close-range photogrammetry for measurement of soil erosion. Photogrammetric Record, 20(109): 69–87.
Shan, J., & Toth, C.K. (eds.) (2009) Topographic Laser Ranging and Scanning: Principles and Processing. CRC Press Taylor and Francis Group, Boca Raton, U.S.A.
Smith, M., Vericat, D., & Gibbins, C. (2012) Through-water terrestrial laser scanning of gravel beds at the patch scale. Earth Surface Processes and Landforms, 37(4): 411–421. DOI: 10.1002/esp.2254
Véga, C., & St-Onge, B. (2008) Height growth reconstruction of a boreal forest canopy over a period of 58 years using a combination of photogrammetric and lidar models. Remote Sensing of Environment, 112(4): 1784–1794.
Vollath, U., Landau, H., & Chen, X. (2002) Network RTK – Concept and Performance. In: Proceedings of the GNSS Symposium, November 2002, Wuhan, China.
Wang, M.S., Liu, C.C., Liou, J.L., & Hsiao, F.D. (2006) Surveying Results Analysis on Virtual Base Station Real Time Kinematic Positioning System of e-GPS Base Station Network. Journal of Cadastral Survey, 25(2): 1–19.
Westaway, R.M., Lane, S.N., & Hicks, D.M. (2000) The development of an automated correction procedure for digital photogrammetry for the study of wide, shallow gravel-bed rivers. Earth Surface Processes and Landforms, 25(2): 200–226.
Westaway, R.M., Lane, S.N., & Hicks, D.M. (2001) Airborne remote sensing of clear water, shallow, gravel-bed rivers using digital photogrammetry and image analysis. Photogrammetric Engineering and Remote Sensing, 67(11): 1271–1281.
Westaway, R.M., Lane, S.N., & Hicks, D.M. (2003) Remote survey of large-scale braided, gravel-bed rivers using digital photogrammetry and image analysis. International Journal of Remote Sensing, 24(4): 795–815.
Wolf, P.R., Dewitt, B.A. (2004) Elements of photogrammetry with applications in GIS. McGraw-Hill, New York, U.S.A.
Yeh, T.K., Wu, C.T., Yang, M.Y., Huang, C.C., & Han, C.A. (2011) Coordinate Transformation Between TWD67, TWD97 and e-GPS By Using Seven Parameters Method: case study on Jhongli. Journal of Cadastral Survey, 30(1): 14–29.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw