進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1102201922382800
論文名稱(中文) 以熱壓燒結法製備奈米層狀碳化鈦矽陶瓷及其微結構與機械性質之研究
論文名稱(英文) Microstructure and Mechanical Properties of Nano-laminated Titanium Silicon Carbide (Ti3SiC2) Ceramics Synthesized by Hot-pressed Sintering
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 羅文賾
研究生(英文) Wen-Tse Lo
學號 N58991100
學位類別 博士
語文別 中文
論文頁數 118頁
口試委員 指導教授-黃肇瑞
口試委員-黃啟原
口試委員-向性一
口試委員-盧鴻華
口試委員-王聖璋
口試委員-李丁福
中文關鍵字 碳化鈦矽  Ti3SiC2  陶瓷  複合材料  熱壓燒結  微結構  反應機制  機械性質 
英文關鍵字 Titanium Silicon Carbide  Ti3SiC2  Ceramic  Composites  Hot-pressed Sintering  Microstructure  Reaction Mechanism  Mechanical Properties 
學科別分類
中文摘要 本研究以3Ti/1SiC/1C與3Ti/1SiC/1C/0.1Si起始粉末製備高純度碳化鈦矽陶瓷材料,並以2TiC/1Ti/1Si與2TiC/1Ti/1.1Si起始粉末製備碳化鈦/碳化鈦矽複合陶瓷材料,藉由熱壓燒結法於1200oC 至1700oC,0.1 MPa氬氣氣氛及25 MPa機械壓力下製備碳化鈦矽陶瓷(Ti3SiC2)及碳化鈦矽基複合陶瓷,探討熱壓燒結溫度以及起始粉末中矽添加量對於材料純度、密度、微結構及機械性質之影響,並對高純度碳化鈦矽陶瓷燒結體進行高應變率衝擊測試,分析材料動態破壞行為。
在以3Ti/1SiC/1C與3Ti/1SiC/1C/0.1Si起始粉末合成高純度碳化鈦矽陶瓷材料的研究結果發現,隨著熱壓溫度提升,燒結體純度及視密度皆有增加的趨勢;於較低熱壓溫度下,矽添加量對材料純度有明顯的提升效果;製程中主要的中間相為TiC、Ti5Si3及TiSi2。Ti3SiC2陶瓷的合成機制主要是經由Si及C於TiC及Ti5Si3間擴散,而成核、成長於TiC與Ti5Si3晶粒中。以3Ti/1SiC/1C/0.1Si成分於1500oC熱壓燒結一小時,可獲致高於99 vol% Ti3SiC2相含量的最佳純度,且孔隙率極低的緻密碳化鈦矽陶瓷;其維氏硬度約3 GPa,四點彎曲強度約335 MPa,破壞韌性約7 MPa·m1/2。
以手槍子彈射擊前述最佳純度緻密碳化鈦矽陶瓷燒結體進行衝擊測試,藉由分析Ti3SiC2陶瓷受到高應變率時材料微結構的變化情形及破斷面形貌,探討碳化鈦矽陶瓷成為防彈板夾層材料的可能性。分析材料破斷面後發現,碳化鈦矽陶瓷材料的破壞模式兼具穿晶破壞、裂縫轉折、晶粒拔出、變形,其長板層狀結構有縐摺、擴散微裂縫、脫層與晶粒崩裂等現象,鄰近晶界處有差排及疊差等缺陷產生,而材料內部的Ti3SiC2相於子彈射擊測試前後並未發生相變化或分解現象。
在以2TiC/1Ti/1Si與2TiC/1Ti/1.1Si起始粉末製備碳化鈦/碳化鈦矽複合陶瓷材料的研究方面,成功製備出多種含量配比的緻密TiC/Ti3SiC2複合陶瓷材料。於熱壓溫度為1200 – 1400oC區間,起始成分中添加過量Si對燒結體中Ti3SiC2相生成的效益較顯著,而熱壓溫度提升至1500oC時則此效益較不明顯。燒結體中Ti3SiC2相的晶粒大小及含量隨熱壓溫度上升而提升,而當燒結體中的TiC相含量增加時,燒結體中Ti3SiC2相的晶粒成長則會受到抑制。2TiC/1Ti/1Si成分於1550oC熱壓的燒結體具有最高的破壞強度627 MPa。於熱壓溫度為1200 – 1500oC區間,在同一熱壓燒結條件下,添加過量Si可提升燒結體的破壞強度及破壞韌性,2TiC/1Ti/1.1Si成分於1400oC熱壓後的燒結體具有最高的破壞韌性,7.59·MPa·m1/2。而分析材料破斷面及裂縫延伸狀態後發現,碳化鈦/碳化鈦矽陶瓷材料的破壞模式與高純度碳化鈦矽陶瓷材料相似。
英文摘要 Ti3SiC2 ceramics and TiC/Ti3SiC2 composites have been synthesized by reactive hot-pressed sintering. The influences of composition and preparation parameters on the purity, microstructure, and the reaction mechanism of Ti3SiC2 ceramics were investigated. The mechanical properties of the TiC/Ti3SiC2 composites and highly pure Ti3SiC2 ceramics were also estimated. Results indicated that the content of Ti3SiC2 increased with increasing hot-pressed temperature up to 1500°C. The amount of excess Si additive had substantial effects on the purity of Ti3SiC2 at the lower hot-pressed temperatures. The samples with 3Ti/SiC/C/0.1Si (molar ratio) hot-pressed at 1500°C for 1 h were predominantly Ti3SiC2 phase (Purity higher than 99 vol%), and the grains exhibited elongated in shape with a grain size of 3 – 8 m. The four-point bending strength, fracture toughness, hardness, and apparent density were 335 MPa, 7 MPa·m1/2, 3 GPa and 4.51 g/cm3, respectively. The deformation response of high pure Ti3SiC2 ceramics have been investigated by performing ballistic impact testing at a range of low velocities. The typical fracture surface of the fragments exhibited transgranular fracture combined with intergranular fracture. Most fracture mechanisms were similar to energy-absorbing mechanisms observed in the vicinity of the indentation. The Si plane was depleted and the remaining thin lamella consisted of six close-packed Ti planes, with five C planes in-between, showing identical stacking as {111} planes in TiC. The Hugoniot elastic limit was estimated to be 10 GPa. The TiC/Ti3SiC2 composite sample exhibits maximum flexural strength of 627 MPa. The composite synthesized from 2TiC/1Ti/1.1Si (molar ratio) composition shows better mechanical properties compared to 2TiC/1Ti/1Si (molar ratio) composition.
論文目次 中文摘要 I
Extended Abstract III
誌 謝 XII
總目錄 XIII
表目錄 XVI
圖目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 理論基礎與文獻回顧 5
2-1 MAX – 層狀三元化合物陶瓷材料 5
2-2 碳化鈦矽 (Ti3SiC2) 陶瓷 9
2-2-1 簡介 9
2-2-2 碳化鈦矽 (Ti3SiC2) 與碳化鈦 (TiC) 間的晶體結構關係 12
2-2-3 鍵結特性 12
2-2-4 合成方法 15
2-2-5 反應機制 15
2-3 陶瓷基複合材料的強化及韌化機制 17
2-3-1 強化機制 17
2-3-2 韌化機制 18
第三章 實驗方法與步驟 23
3-1 試樣製備 23
3-1-1 起始原料粉末的規格 23
3-1-2 起始粉末混製 23
3-1-3 生胚製備 28
3-1-4 試樣燒結 28
3-2 燒結體物理性質及機械性質測定 30
3-2-1 密度測定 30
3-2-2 硬度測定 31
3-2-3 楊氏係數測定 31
3-2-4 彎曲強度 33
3-2-5 破壞韌性 33
3-3 燒結體的微結構分析與觀察 34
3-3-1 晶相分析 34
3-3-2 掃描式電子顯微鏡觀察 35
3-3-3 電子微探分析儀顯微觀察與成分分析 35
3-3-4 穿透式電子顯微鏡觀察 35
第四章 高純度碳化鈦矽陶瓷材料合成及其性質研究 37
4-1 高純度碳化鈦矽陶瓷材料合成 37
4-1-1 試樣熱壓燒結 37
4-1-2 熱壓燒結條件對燒結體相組成的影響 37
4-1-3 燒結體Ti3SiC2相含量評估 41
4-1-4 起始粉末Si含量對Ti3SiC2陶瓷材料合成純度的影響 44
4-1-5 熱壓燒結持溫時間對Ti3SiC2陶瓷材料合成純度的影響 44
4-2 碳化鈦矽陶瓷材料的熱穩定性 45
4-3 燒結體視密度與視孔隙率 51
4-4 微觀結構分析 54
4-5 碳化鈦矽陶瓷成長機制 59
4-6 機械性質及材料破壞行為 64
4-7 高應變率動態破壞行為 67
4-7-1 試樣製備 67
4-7-2 試樣性質分析 67
4-7-3 高應變率動態衝擊測試 67
第五章 碳化鈦矽/碳化鈦複合陶瓷材料合成及性質研究 77
5-1 試樣製備 77
5-2 相組成分析 77
5-3 燒結體視密度與視孔隙率 82
5-4 微觀結構分析 85
5-5 機械性質分析 88
5-5-1 四點抗彎強度 88
5-5-2 破壞韌性 90
5-6 材料破壞行為分析 91
第六章 結論 100
參考文獻 102
研究成果目錄 115
參考文獻 [1]. W. Jeitschko and H. Nowotny, "Crystal Structure of Ti3SiC2 a New Type of Complex Carbide," Monatshefte Fur Chemie, 98[2] 329-37 (1967).
[2]. M. W. Barsoum and T. El-Raghy, "Synthesis and characterization of a remarkable ceramic: Ti3SiC2," Journal of the American Ceramic Society, 79[7] 1953-56 (1996).
[3]. H. B. Zhang, Y. W. Bao, and Y. C. Zhou, "Current Status in Layered Ternary Carbide Ti3SiC2, a Review," Journal of Materials Science & Technology, 25[1] 1-38 (2009).
[4]. M. W. Barsoum, "MAX Phases: Properties of Machinable Ternary Carbides and Nitrides." Wiley-VCH Verlag GmbH & Co. KGaA, (2013).
[5]. C. Racault, F. Langlais, and R. Naslain, "Solid-State Synthesis and Characterization of the Ternary Phase Ti3SiC2," Journal of Materials Science, 29[13] 3384-92 (1994).
[6]. M. W. Barsoum, T. El-Raghy, C. J. Rawn, W. D. Porter, H. Wang, E. A. Payzant, and C. R. Hubbard, "Thermal properties of Ti3SiC2," Journal of Physics and Chemistry of Solids, 60[4] 429-39 (1999).
[7]. M. W. Barsoum, D. Brodkin, and T. El-Raghy, "Layered machinable ceramics for high temperature applications," Scripta Materialia, 36[5] 535-41 (1997).
[8]. M. W. Barsoum, "The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates," Progress in Solid State Chemistry, 28[1] 201-81 (2000).
[9]. T. El-Raghy, A. Zavaliangos, M. W. Barsoum, and S. R. Kalidindi, "Damage mechanisms around hardness indentations in Ti3SiC2," Journal of the American Ceramic Society, 80[2] 513-16 (1997).
[10]. Y. M. Luo, W. Pan, S. Q. Li, J. Chen, R. G. Wang, and J. Q. Li, "Synthesis of high-purity Ti3SiC2 polycrystals by hot-pressing of the elemental powders," Materials Letters, 52[4-5] 245-47 (2002).
[11]. Y. M. Luo, W. Pan, S. Q. Li, and J. Chen, "Synthesis and mechanical properties of in-situ hot-pressed Ti3SiC2 polycrystals," Ceramics International, 28[2] 227-30 (2002).
[12]. C. J. Gilbert, D. R. Bloyer, M. W. Barsoum, T. El-Raghy, A. P. Tomsia, and R. O. Ritchie, "Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2," Scripta Materialia, 42[8] 761-67 (2000).
[13]. D. Chen, K. Shirato, M. W. Barsoum, T. El-Raghy, and R. O. Ritchie, "Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures," Journal of the American Ceramic Society, 84[12] 2914-20 (2001).
[14]. L. Shannahan, M. W. Barsoum, and L. Lamberson, "Dynamic fracture behavior of a MAX phase Ti3SiC2," Engineering Fracture Mechanics, 169 54-66 (2017).
[15]. W. T. Lo, C. A. Jeng, J. L. Huang, H. H. Lu, and D. F. Lii, "Investigation of ballistic impact properties and fracture mechanisms of Ti3SiC2 ternary ceramics," Journal of Alloys and Compounds, 455[1-2] 413-19 (2008).
[16]. T. El-Raghy, P. Blau, and M. W. Barsoum, "Effect of grain size on friction and wear behavior of Ti3SiC2," Wear, 238[2] 125-30 (2000).
[17]. L. H. Ho-Duc, T. El-Raghy, and M. W. Barsoum, "Synthesis and characterization of 0.3 Vf TiC-Ti3SiC2 and 0.3 Vf SiC-Ti3SiC2 composites," Journal of Alloys and Compounds, 350[1-2] 303-12 (2003).
[18]. H. J. Wang, Z. H. Jin, and Y. Miyamoto, "Ti3SiC2/Al2O3 composites prepared by SPS," Ceramics International, 29[5] 539-42 (2003).
[19]. S. B. Li, J. X. Xie, L. T. Zhang, and L. F. Cheng, "Mechanical properties and oxidation resistance of Ti3SiC2/SiC composite synthesized by in situ displacement reaction of Si and TiC," Materials Letters, 57[20] 3048-56 (2003).
[20]. S. B. Li, J. X. Xie, L. T. Zhang, and L. F. Cheng, "In situ synthesis of Ti3SiC2/SiC composite by displacement reaction of Si and TiC," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 381[1-2] 51-56 (2004).
[21]. S.-B. Li, L.-F. Cheng, and L.-T. Zhang, "The morphology of oxides and oxidation behavior of Ti3SiC2-based composite at high-temperature," Composites Science and Technology, 63[6] 813-19 (2003).
[22]. R. Radhakrishnan, C. H. Henager, J. L. Brimhall, and S. B. Bhaduri, "Synthesis of Ti3SiC2/SiC and TiSi2/SiC composites using displacement reactions in the Ti-Si-C system," Scripta Materialia, 34[12] 1809-14 (1996).
[23]. X. H. Tong, T. Okano, T. Iseki, and T. Yano, "Synthesis and High-Temperature Mechanical-Properties of Ti3SiC2/SiC Composite," Journal of Materials Science, 30[12] 3087-90 (1995).
[24]. J. Yang, W. Gu, L. M. Pan, K. Song, X. Chen, and T. Qiu, "Friction and wear properties of in situ (TiB2 + TiC)/Ti3SiC2 composites," Wear, 271[11-12] 2940-46 (2011).
[25]. W. Pan and S. L. Shi, "Microstructure and mechanical properties of Ti3SiC2/3Y-TZP composites by spark plasma sintering," Journal of the European Ceramic Society, 27[1] 413-17 (2007).
[26]. W. J. J. Wakelkamp, F. J. J. van Loo, and R. Metselaar, "Phase relations in the Ti-Si-C system," Journal of the European Ceramic Society, 8[3] 135-39 (1991).
[27]. S. Arunajatesan and A. H. Carim, "Synthesis of Titanium Silicon Carbide," Journal of the American Ceramic Society, 78[3] 667-72 (1995).
[28]. S. Tada, K. Murase, H. Hashimoto, and Z. M. Sun, "Fabrication of functionally graded Ti3SiC2-TiC binary-phase material," Materials Transactions, 48[2] 139-42 (2007).
[29]. S. Konoplyuk, T. Abe, T. Uchimoto, and T. Takagi, "Ti3SiC2/TiC composites prepared by PDS," Journal of Materials Science, 40[13] 3409-13 (2005).
[30]. S. Konoplyuk, T. Abe, T. Uchimoto, and T. Takagi, "Synthesis of Ti3SiC2/TiC composites from TiH2/SiC/TiC powders," Materials Letters, 59[18] 2342-46 (2005).
[31]. W. B. Tian, Z. M. Sun, H. Hashimoto, and Y. L. Du, "Synthesis, microstructure and mechanical properties of Ti3SiC2-TiC composites pulse discharge sintered from Ti/Si/TiC powder mixture," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 526[1-2] 16-21 (2009).
[32]. M. Radovic and M. W. Barsoum, "MAX phases: Bridging the gap between metals and ceramics," American Ceramic Society Bulletin, 92[3] 20-27 (2013).
[33]. M. W. Barsoum and T. El-Raghy, "The MAX phases: Unique new carbide and nitride materials - Ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight," American Scientist, 89[4] 334-43 (2001).
[34]. Z. M. Sun, "Progress in research and development on MAX phases: a family of layered ternary compounds," International Materials Reviews, 56[3] 143-66 (2011).
[35]. J. P. Palmquist, S. Li, P. O. A. Persson, J. Emmerlich, O. Wilhelmsson, H. Hogberg, M. I. Katsnelson, B. Johansson, R. Ahuja, O. Eriksson, L. Hultman, and U. Jansson, "Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations," Physical Review B, 70[16] 165401 (2004).
[36]. Z. Lin, M. Zhuo, Y. Zhou, M. Li, and J. Wang, "Microstructures and Theoretical Bulk Modulus of Layered Ternary Tantalum Aluminum Carbides," Journal of the American Ceramic Society, 89[12] 3765-69 (2006).
[37]. J. Zhang, B. Liu, J. Y. Wang, and Y. C. Zhou, "Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and x-ray diffraction investigations," Journal of Materials Research, 24[1] 39-49 (2009).
[38]. T. Cabioc'h, P. Eklund, V. Mauchamp, and M. Jaouen, "Structural investigation of substoichiometry and solid solution effects in Ti2Al(Cx,N1-x)y compounds," Journal of the European Ceramic Society, 32[8] 1803-11 (2012).
[39]. V. H. Nowotny, "Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn," Progress in Solid State Chemistry, 5 27-70 (1971).
[40]. W. Jeitschko, H. Nowotny, and F. Benesovsky, "Kohlenstoffhaltige ternäre Verbindungen (H-Phase)," Monatshefte für Chemie : an international journal of chemistry, 94[4] 672-76 (1963).
[41]. W. Jeitschko, H. Nowotny, and F. Benesovsky, "Kohlenstoffhaltige ternäre Verbindungen (V-Ge-C, Nb-Ga-C, Ta-Ga-C, Ta-Ge-C, Cr-Ga-C und Cr-Ge-C)," Monatshefte für Chemie : an international journal of chemistry, 94[5] 844-50 (1963).
[42]. W. Jeitschko, H. Nowotny, and F. Benesovsky, "Ti2AlN, eine stickstoffhaltige H-Phase," Monatshefte für Chemie : an international journal of chemistry, 94[6] 1198-200 (1963).
[43]. W. Jeitschko, H. Nowotny, and F. Benesovsky, "Die H-Phasen Ti2InC, Zr2InC, Hf2InC und Ti2GeC," Monatshefte für Chemie : an international journal of chemistry, 94[6] 1201-05 (1963).
[44]. W. Jeitschko, H. Nowotny, and F. Benesovsky, "Die H-Phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC," Monatshefte für Chemie : an international journal of chemistry, 95[1] 178-79 (1964).
[45]. W. Jeitschko, H. Nowotny, and F. Benesovsky, "Die H-Phasen Ti2TlC, Ti2PbC, Nb2InC, Nb2SnC und Ta2GaC," Monatshefte für Chemie : an international journal of chemistry, 95[2] 431-35 (1964).
[46]. W. Jeitschko, H. Holleck, H. Nowotny, and F. Benesovsky, "Phasen mit aufgefülltem Ti2Ni-Typ," Monatshefte für Chemie : an international journal of chemistry, 95[3] 1004-06 (1964).
[47]. H. Boller and H. Nowotny, "Röntgenographische Untersuchungen im System: Vanadin-Arsen-Kohlenstoff," Monatshefte für Chemie : an international journal of chemistry, 97[4] 1053-58 (1966).
[48]. E. Reiffenstein, H. Nowotny, and F. Benesovsky, "Strukturchemische und magnetochemische Untersuchungen an Komplexcarbiden," Monatshefte für Chemie : an international journal of chemistry, 97[5] 1428-36 (1966).
[49]. H. Wolfsgruber, H. Nowotny, and F. Benesovsky, "Die Kristallstruktur von Ti3GeC2," Monatshefte für Chemie : an international journal of chemistry, 98[6] 2403-05 (1967).
[50]. O. Beckmann, H. Boller, and H. Nowotny, "Neue H-Phasen," Monatshefte für Chemie : an international journal of chemistry, 99[4] 1580-83 (1968).
[51]. H. Boller and H. Nowotny, "Die Kristallstruktur von V2PC und V5P3N," Monatshefte für Chemie : an international journal of chemistry, 99[2] 672-75 (1968).
[52]. O. Beckmann, H. Boller, H. Nowotny, and F. Benesovsky, "Einige Komplexcarbide und-nitride in den Systemen Ti-{Zn, Cd, Hg}-{C, N} und Cr-Ga-N," Monatshefte für Chemie : an international journal of chemistry, 100[5] 1465-70 (1969).
[53]. J. C. Schuster, H. Nowotny, and C. Vaccaro, "The ternary systems: CrAlC, VAlC, and TiAlC and the behavior of H-phases (M2AlC)," Journal of Solid State Chemistry, 32[2] 213-19 (1980).
[54]. P. Eklund, M. Beckers, U. Jansson, H. Hogberg, and L. Hultman, "The Mn+1AXn phases: Materials science and thin-film processing," Thin Solid Films, 518[8] 1851-78 (2010).
[55]. W. Jeitschko and H. Nowotny, "Die Kristallstruktur von Ti3SiC2—ein neuer Komplexcarbid-Typ," Monatshefte für Chemie : an international journal of chemistry, 98[2] 329-37 (1967).
[56]. M. A. Pietzka and J. C. Schuster, "Summary of constitutional data on the Aluminum-Carbon-Titanium system," Journal of Phase Equilibria, 15[4] 392-400 (1994).
[57]. M. A. Pietzka and J. C. Schuster, "Phase Equilibria in the Quaternary System Ti-Al-C-N," Journal of the American Ceramic Society, 79[9] 2321-30 (1996).
[58]. S. Amini, M. W. Barsoum, and T. El-Raghyy, "Synthesis and mechanical properties of fully dense Ti2SC," Journal of the American Ceramic Society, 90[12] 3953-58 (2007).
[59]. C. F. Hu, F. Z. Li, J. Zhang, J. M. Wang, J. Y. Wang, and Y. C. Zhou, "Nb4AlC3: A new compound belonging to the MAX phases," Scripta Materialia, 57[10] 893-96 (2007).
[60]. P. Eklund, J. P. Palmquist, J. Howing, D. H. Trinh, T. El-Raghy, H. Hogberg, and L. Hultman, "Ta4AlC3: Phase determination, polymorphism and deformation," Acta Materialia, 55[14] 4723-29 (2007).
[61]. S. Dubois, T. Cabioc'h, P. Chartier, V. Gauthier, and M. Jaouen, "A new ternary nanolaminate carbide: Ti3SnC2," Journal of the American Ceramic Society, 90[8] 2642-44 (2007).
[62]. C. F. Hu, J. Zhang, Y. W. Bao, J. Y. Wang, M. S. Li, and Y. C. Zhou, "In-situ reaction synthesis and decomposition of Ta2AlC," International Journal of Materials Research, 99[1] 8-13 (2008).
[63]. Y. W. Bao and Y. C. Zhou, "Low shear strength and shear-induced failure in Ti3SiC2," Journal of Materials Science & Technology, 19[3] 197-200 (2003).
[64]. M. Sundberg, G. Malmqvist, A. Magnusson, and T. El-Raghy, "Alumina forming high temperature silicides and carbides," Ceramics International, 30[7] 1899-904 (2004).
[65]. M. W. Barsoum, T. Zhen, S. R. Kalidindi, M. Radovic, and A. Murugaiah, "Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa," Nature Materials, 2[2] 107-11 (2003).
[66]. M. Radovic, M. W. Barsoum, T. El-Raghy, S. M. Wiederhom, and W. E. Luecke, "Effect of temperature, strain rate and grain size on the mechanical response of Ti3SiC2 in tension," Acta Materialia, 50[6] 1297-306 (2002).
[67]. J. J. Nickl, K. K. Schweitzer, and P. Luxenberg, "Gasphasenabscheidung im system Ti-Si-C," Journal of the Less Common Metals, 26[3] 335-53 (1972).
[68]. T. Goto and T. Hirai, "Chemically Vapor-Deposited Ti3SiC2," Materials Research Bulletin, 22[9] 1195-201 (1987).
[69]. J. Lis, R. Pampuch, J. Piekarczyk, and L. Stobierski, "New Ceramics Based on Ti3SiC2," Ceramics International, 19[4] 219-22 (1993).
[70]. J. Morgiel, J. Lis, and R. Pampuch, "Microstructure of Ti3SiC2-based ceramics," Materials Letters, 27[3] 85-89 (1996).
[71]. R. Pampuch, J. Lis, L. Stobierski, and M. Tymkiewicz, "Solid combustion synthesis of Ti3SiC2," Journal of the European Ceramic Society, 5[5] 283-87 (1989).
[72]. Y. C. Zhou and Z. M. Sun, "Crystallographic relations between Ti3SiC2 and TiC," Materials Research Innovations, 3[5] 286-91 (2000).
[73]. Y. C. Zhou, Z. M. Sun, S. Q. Chen, and Y. Zhang, "In-situ hot pressing solid-liquid reaction synthesis of dense titanium silicon carbide bulk ceramics," Materials Research Innovations, 2[3] 142-46 (1998).
[74]. J. Lis, Y. Miyamoto, R. Pampuch, and K. Tanihata, "Ti3SiC2-Based Materials Prepared by Hip-Shs Techniques," Materials Letters, 22[3-4] 163-68 (1995).
[75]. A. G. Feng, T. Orling, and Z. A. Munir, "Field-activated pressure-assisted combustion synthesis of polycrystalline Ti3SiC2," Journal of Materials Research, 14[3] 925-39 (1999).
[76]. Z. F. Zhang, Z. M. Sun, H. Hashimoto, and T. Abe, "Application of pulse discharge sintering (PDS) technique to rapid synthesis of Ti3SiC2 from Ti/Si/C powders," Journal of the European Ceramic Society, 22[16] 2957-61 (2002).
[77]. T. El-Raghy and M. W. Barsoum, "Processing and mechanical properties of Ti3SiC2: I, reaction path and microstructure evolution," Journal of the American Ceramic Society, 82[10] 2849-54 (1999).
[78]. N. F. Gao, Y. Miyamoto, and D. Zhang, "On physical and thermochemical properties of high-purity Ti3SiC2," Materials Letters, 55[1-2] 61-66 (2002).
[79]. R. Radhakrishnan, J. J. Williams, and M. Akinc, "Synthesis and high-temperature stability of Ti3SiC2," Journal of Alloys and Compounds, 285[1-2] 85-88 (1999).
[80]. I. M. Low, "Depth profiling of phase composition in a novel Ti3SiC2-TiC system with graded interfaces," Materials Letters, 58[6] 927-32 (2004).
[81]. M. W. Barsoum, T. El-Raghy, L. Farber, M. Amer, R. Christini, and A. Adams, "The topotactic transformation of Ti3SiC2 into a partially ordered cubic Ti(C0.67Si0.06) phase by the diffusion of Si into molten cryolite," Journal of the Electrochemical Society, 146[10] 3919-23 (1999).
[82]. W. L. Gu, C. K. Yan, and Y. C. Zhou, "Reactions between Al and Ti3SiC2 in temperature range of 600-650 degrees C," Scripta Materialia, 49[11] 1075-80 (2003).
[83]. T. El-Raghy and M. W. Barsoum, "Diffusion kinetics of the carburization and silicidation of Ti3SiC2," Journal of Applied Physics, 83[1] 112-19 (1998).
[84]. J. T. Li and Y. Miyamoto, "Fabrication of monolithic Ti3SiC2 ceramic through reactive sintering of Ti/Si/2TiC," Journal of Materials Synthesis and Processing, 7[2] 91-96 (1999).
[85]. Z. F. Zhang, Z. M. Sun, and H. Hashimoto, "Rapid synthesis of ternary carbide Ti3SiC2 through pulse-discharge sintering technique from Ti/Si/TiC powders," Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 33[11] 3321-28 (2002).
[86]. Y. C. Zhou and Z. M. Sun, "Electronic structure and bonding properties in layered ternary carbide Ti3SiC2," Journal of Physics-Condensed Matter, 12[28] L457-L62 (2000).
[87]. Y. Zhou, Z. Sun, X. Wang, and S. Chen, "Ab initiogeometry optimization and ground state properties of layered ternary carbides Ti3MC2(M = Al, Si and Ge)," Journal of Physics: Condensed Matter, 13[44] 10001-10 (2001).
[88]. F. Goesmann, R. Wenzel, and R. Schmid-Fetzer, "Preparation of Ti3SiC2 by electron-beam-ignited solid-state reaction," Journal of the American Ceramic Society, 81[11] 3025-28 (1998).
[89]. K. Tang, C. A. Wang, Y. Huang, and Q. F. Zan, "Growth model and morphology of Ti3SiC2 grains," Journal of Crystal Growth, 222[1-2] 130-34 (2001).
[90]. D. P. Riley, E. H. Kisi, E. Wu, and A. McCallum, "Self-propagating high-temperature synthesis of Ti3SiC2 from 3Ti+SiC+C reactants," Journal of Materials Science Letters, 22[15] 1101-04 (2003).
[91]. Z. M. Sun, S. L. Yang, H. Hashimoto, S. Tada, and T. Abe, "Synthesis and consolidation of ternary compound Ti3SiC2 from green compact of mixed powders," Materials Transactions, 45[2] 373-75 (2004).
[92]. W. T. Lo, P. K. Nayak, H. H. Lu, D. F. Lii, and J. L. Huang, "Evolution of binary phase TiC/Ti3SiC2 composites from TiC/Ti/Si by hot-pressed reactive sintering," Materials Science and Engineering B-Advanced Functional Solid-State Materials, 172[1] 18-23 (2010).
[93]. Z. F. Zhang, Z. M. Sun, H. Hashimoto, and T. Abe, "A new synthesis reaction of Ti3SiC2 through pulse discharge sintering Ti/SiC/TiC powder," Scripta Materialia, 45[12] 1461-67 (2001).
[94]. H. Klemm, K. Tanihata, and Y. Miyamoto, "Gas Pressure Combustion Sintering and Hot Isostatic Pressing in the Ti-Si-C System," Journal of Materials Science, 28[6] 1557-62 (1993).
[95]. C. Racault, F. Langlais, and C. Bernard, "On the Chemical-Vapor-Deposition of Ti3SiC2 from TiCl4-SiCl4-CH4-H2 Gas-Mixtures. 1. A Thermodynamic Approach," Journal of Materials Science, 29[19] 5023-40 (1994).
[96]. C. Racault, F. Langlais, R. Naslain, and Y. Kihn, "On the Chemical-Vapor-Deposition of Ti3SiC2 from TiCl4-SiCl4-CH4-H2 Gas-Mixtures. 2. An Experimental Approach," Journal of Materials Science, 29[15] 3941-48 (1994).
[97]. E. Pickering, W. J. Lackey, and S. Crain, "CVD of Ti3SiC2," Chemical Vapor Deposition, 6[6] 289-95 (2000).
[98]. S. Jacques, H. Di-Murro, M. P. Berthet, and H. Vincent, "Pulsed reactive chemical vapor deposition in the C-Ti-Si system from H2/TiCl4/SiCl4," Thin Solid Films, 478[1-2] 13-20 (2005).
[99]. J. Emmerlich, H. Hogberg, S. Sasvari, P. O. A. Persson, L. Hultman, J. P. Palmquist, U. Jansson, J. M. Molina-Aldareguia, and Z. Czigany, "Growth of Ti3SiC2 thin films by elemental target magnetron sputtering," Journal of Applied Physics, 96[9] 4817-26 (2004).
[100]. H. Hogberg, L. Hultman, J. Emmerlich, T. Joelsson, P. Eklund, J. M. Molina-Aldareguia, J. P. Palmquist, O. Wilhelmsson, and U. Jansson, "Growth and characterization of MAX-phase thin films," Surface & Coatings Technology, 193[1-3] 6-10 (2005).
[101]. J. J. Hu, J. E. Bultman, S. Patton, and J. S. Zabinski, "Pulsed laser deposition and properties of Mn+1AXn phase formulated Ti3SiC2 thin films," Tribology Letters, 16[1-2] 113-22 (2004).
[102]. J. Lis, R. Pampuch, T. Rudnik, and Z. Wegrzyn, "Reaction sintering phenomena of self-propagating high-temperature synthesis-derived ceramic powders in the Ti-Si-C system," Solid State Ionics, 101 59-64 (1997).
[103]. D. P. Riley, E. H. Kisi, and D. Phelan, "SHS of Ti3SiC2: ignition temperature depression by mechanical activation," Journal of the European Ceramic Society, 26[6] 1051-58 (2006).
[104]. N. F. Gao, Y. Miyamoto, and D. Zhang, "Dense Ti3SiC2 prepared by reactive HIP," Journal of Materials Science, 34[18] 4385-92 (1999).
[105]. F. Sato, J. F. Li, and R. Watanabe, "Reaction synthesis of Ti3SiC2 from mixture of elemental powders," Materials Transactions Jim, 41[5] 605-08 (2000).
[106]. S. L. Yang, Z. M. Sun, H. Hashimoto, and T. Abe, "Ti3SiC2 powder synthesis from Ti/Si/TiC powder mixtures," Journal of Alloys and Compounds, 358[1-2] 168-72 (2003).
[107]. Z. M. Sun, Y. Zhang, and Y. C. Zhou, "Synthesis of Ti3SiC2 powders by a solid-liquid reaction process," Scripta Materialia, 41[1] 61-66 (1999).
[108]. N. F. Gao, J. T. Li, D. Zhang, and Y. Miyamoto, "Rapid synthesis of dense Ti3SiC2 by spark plasma sintering," Journal of the European Ceramic Society, 22[13] 2365-70 (2002).
[109]. K. Tang, C. A. Wang, L. F. Wu, X. J. Guo, X. L. Xu, and Y. Huang, "Sintering of Ti3SiC2 with B2O3 additions," Ceramics International, 28[7] 761-65 (2002).
[110]. J. F. Li, T. Matsuki, and R. Watanabe, "Fabrication of highly dense Ti3SiC2 ceramics by pressureless sintering of mechanically alloyed elemental powders," Journal of Materials Science, 38[12] 2661-66 (2003).
[111]. J. F. Li, T. Matsuki, and R. Watanabe, "Combustion reaction during mechanical alloying synthesis of Ti3SiC2 ceramics from 3Ti/Si/2C powder mixture," Journal of the American Ceramic Society, 88[5] 1318-20 (2005).
[112]. S. B. Li and H. X. Zhai, "Synthesis and reaction mechanism of Ti3SiC2 by mechanical alloying of elemental Ti, Si, and C powders," Journal of the American Ceramic Society, 88[8] 2092-98 (2005).
[113]. S. B. Li, H. X. Zhai, Y. Zhou, and Z. L. Zhang, "Synthesis of Ti3SiC2 powders by mechanically activated sintering of elemental powders of Ti, Si and C," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 407[1-2] 315-21 (2005).
[114]. E. D. Wu, E. H. Kisi, S. J. Kennedy, and A. J. Studer, "In situ neutron powder diffraction study of Ti3SiC2 synthesis," Journal of the American Ceramic Society, 84[10] 2281-88 (2001).
[115]. E. D. Wu, E. H. Kisi, D. P. Riley, and R. I. Smith, "Intermediate phases in Ti3SiC2 synthesis from Ti/SiC/C mixtures studied by time-resolved neutron diffraction," Journal of the American Ceramic Society, 85[12] 3084-86 (2002).
[116]. D. P. Riley, E. H. Kisi, T. C. Hansen, and A. W. Hewat, "Self-propagating high-temperature synthesis of Ti3SiC2: I, ultra-high-speed neutron diffraction study of the reaction mechanism," Journal of the American Ceramic Society, 85[10] 2417-24 (2002).
[117]. S. L. Yang, Z. M. Sun, and H. Hashimoto, "Reaction in Ti3SiC2 powder synthesis from a Ti-Si-TiC powder mixture," Journal of Alloys and Compounds, 368[1-2] 312-17 (2004).
[118]. N. J. Petch, "The Cleavage Strength of Polycrystals," Journal of the Iron and Steel Institute, 174[1] 25-28 (1953).
[119]. C. S. Smith, "Grains, Phases, and Interfaces - an Interpretation of Microstructure," Transactions of the American Institute of Mining and Metallurgical Engineers, 175 15-51 (1948).
[120]. M. Sternitzke, "Structural ceramic nanocomposites," Journal of the European Ceramic Society, 17[9] 1061-82 (1997).
[121]. K. T. Faber and A. G. Evans, "Crack deflection processes—I. Theory," Acta Metallurgica, 31[4] 565-76 (1983).
[122]. G. C. WEI and P. F. BECHER, "Improvements in Mechanical Properties in SiC by the Addition of TiC Particles," 67[8] 571-74 (1984).
[123]. Y. Zou, Z. M. Sun, S. Tada, and H. Hashimoto, "Effect of Al addition on low-temperature synthesis of Ti3SiC2 powder," Journal of Alloys and Compounds, 461[1-2] 579-84 (2008).
[124]. J. F. Li, F. Sato, and R. Watanabe, "Synthesis of Ti3SiC2 polycrystals by hot-isostatic pressing of the elemental powders," Journal of Materials Science Letters, 18[19] 1595-97 (1999).
[125]. J. Emmerlich, D. Music, P. Eklund, O. Wilhelmsson, U. Jansson, J. M. Schneider, H. Hogberg, and L. Hultman, "Thermal stability of Ti3SiC2 thin films," Acta Materialia, 55[4] 1479-88 (2007).
[126]. S. K. Choi, M. Chandrasekaran, and M. J. Brabers, "Interaction between Titanium and Sic," Journal of Materials Science, 25[4] 1957-64 (1990).
[127]. D. A. Shockey, A. H. Marchand, S. R. Skaggs, G. E. Cort, M. W. Burkett, and R. Parker, "Failure phenomenology of confined ceramic targets and impacting rods," International Journal of Impact Engineering, 9[3] 263-75 (1990).
[128]. C. J. Shih, M. A. Meyers, V. F. Nesterenko, and S. J. Chen, "Damage evolution in dynamic deformation of silicon carbide," Acta Materialia, 48[9] 2399-420 (2000).
[129]. Z. Rosenberg, "On the relation between the Hugoniot elastic limit and the yield strength of brittle materials," 74[1] 752-53 (1993).
[130]. Z. Rosenberg, "On the shear strength of shock loaded brittle solids," 76[3] 1543-46 (1994).
[131]. D. E. Grady, "Shock-wave compression of brittle solids," Mechanics of Materials, 29[3] 181-203 (1998).
[132]. L. Farber, "transmission electron microscopy study of a low-angle boundary in plastically deformed Ti3SiC2," Philosophical Magazine Letters, 79[4] 163-70 (1999).
[133]. B. J. Kooi, R. J. Poppen, N. J. M. Carvalho, J. T. M. De Hosson, and M. W. Barsoum, "Ti3SiC2: A damage tolerant ceramic studied with nano-indentations and transmission electron microscopy," Acta Materialia, 51[10] 2859-72 (2003).
[134]. R. Yu, Q. Zhang, L. L. He, Y. C. Zhou, and H. Q. Ye, "Stacking faults and grain boundaries of Ti3SiC2," Philosophical Magazine Letters, 83[5] 325-31 (2003).
[135]. K. Tang, C. A. Wang, Y. Huang, Q. F. Zan, and X. L. Xu, "A study on the reaction mechanism and growth of Ti3SiC2 synthesized by hot-pressing," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 328[1-2] 206-12 (2002).
[136]. T. Okano, Yano, T., and Iseki, T., "Synthesis and mechanical properties of Ti3SiC2," Trans. Met. Soc. Jpn., 14A 597 ( 1993).
[137]. H. Hashimoto and Z. M. Sun, "Preparation of TiC-Ti3SiC2 composites by mechanical alloying and hot-pressing," Materials Transactions, 49[7] 1572-78 (2008).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw