進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1102201917450900
論文名稱(中文) 含氮化鎵發光二極體廢晶圓鎵金屬資源再生之研究
論文名稱(英文) Recovery of Gallium from Gallium Nitride-containing Light-Emitting Diode Waste Wafer
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 許立霖
研究生(英文) Li-Lin Hsu
學號 N46064167
學位類別 碩士
語文別 中文
論文頁數 118頁
口試委員 口試委員-許志雄
口試委員-王文裕
口試委員-王立邦
指導教授-陳偉聖
中文關鍵字 藍光LED  氮化鎵  酸溶浸漬  離子交換  化學沉澱  資源再生  廢棄物處理 
英文關鍵字 Blue LED  Gallium Nitride  Waste Recycling  Ion Exchange  Resources Recovery 
學科別分類
中文摘要   本研究針對LED產業中含氮化鎵發光二極體(藍光LED)廢晶圓,採用濕法冶金技術進行鎵金屬資源分離及純化再生之開發與研究。實驗主要分成四部分,分為含氮化鎵發光二極體廢晶圓之特性分析、酸溶浸出、金屬離子分離純化與金屬產物析出,並得到可回流至產業端之產物。
  本研究首先將廢晶圓粉末進行特性分析,藉由樣品粉末之特性分析結果,作為浸漬實驗之依據,在浸漬方面本研究探討不同浸漬方法對廢晶圓中鎵浸漬效率之影響,並探討各項酸溶浸漬之實驗參數,實驗結果顯示使用無機酸針對廢晶圓粉末進行加壓酸浸漬具有極高之鎵浸漬效率,因此以最佳化之浸漬參數進行試驗後,鎵金屬離子溶出率可達99.5%以上。
  在金屬分離純化之研究階段,由於所得之浸漬液主要成分為含鎵與鋁之二元金屬溶液,本研究首先嘗試利用強酸陽離子交換樹脂(IRA-200C)、螯合型陽離子交換樹脂(IRC-748)與非離子型離子交換樹脂(XAD-2)進行離子交換批次吸附實驗,將批次試驗所得之鎵離子之最佳吸附參數,使用IRA-200C與IRC-748兩種樹脂從含氮化鎵發光二極體廢晶圓浸漬液進行離子交換管柱吸附與脫附試驗。最終選擇使用IRC-748離子交換樹脂在pH=5時對溶液中鎵金屬具有選擇性吸附,且鎵離子之吸附效率大於99.5%。由離子交換樹脂脫附試驗結果可得知,使用硫酸做為脫附劑,可有效將鎵離子與樹脂分離,脫附效率大於99.5%。
  金屬產物析出研究主要根據電位(Eh)與酸鹼值(pH)之關係圖,使用氫氧化鈉調整脫附溶液之酸鹼值,並沉澱出金屬氫氧化物之固體,再藉由高溫煅燒之方式得到三氧化二鎵(Ga2O3)產物,以儀器分析金屬氧化物之純度,可達約99%之純度,且鎵金屬回收率大於99%,達到循環再生之目的。
英文摘要 In this study, the separation and purification of gallium were used by hydrometallurgy from gallium nitride-containing light-emitting diode (blue LED) waste wafer for the LED industry. The experiment was divided into four parts, characterization of waste wafers, acid leaching, metal separation and precipitation. Finally, a product was obtained that can be returned to the industry.Firstly, the characteristics analysis of the waste wafer were analyzed, and the results of the analysis were used as the basis for the leaching experiment. In the leaching section disscussed the effect of different leaching methods on the leaching efficiency of gallium. The results show that the use of optimal parameters for pressurized acid leaching ,the leaching efficiency of gallium was up to 99.5%.In metal separation, the batch experiments were first carried out by using IRA-200C, IRC-748 and XAD-2 ion exchange resin.Then IRA-200C and IRC-748 resin were used for adsorption and desorption of column experiments. Finally, IRC-748 ion exchange resin was selected to adsorb gallium at pH=5 in leaching solution, and the adsorption efficiency of gallium was more than 99.5%. The use of sulfuric acid as desorbing agent which could separate gallium ions from the resin effectively with desorption efficiency more than 99.5%.The research of metal product precipitation used sodium hydroxide to adjust the pH value of the desorption solution, and calcined by high temperature. The product of gallium dioxide was obtained and the purity of the product was about 99%. The recovery rate of gallium is more than 99%.
論文目次 中文摘要 (I)
Abstract(II)
誌謝(VI)
目錄(VII)
表目錄(IX)
圖目錄(X)
第一章 緒論(1)
1.1 前言(1)
1.2研究動機與目的(3)
第二章 理論基礎與文獻回顧(4)
2.1 含氮化鎵發光二極體(藍光LED)之特性概述(4)
2.2 鎵之性質與資源量(5)
2.3 鎵、鋁之分選技術(6)
2.4 氮化鎵之資源化文獻回顧(11)
2.5 廢棄物資源化技術(15)
2.6 金屬分離純化理論基礎(18)
2.7離子交換樹脂理論基礎(21)
第三章 實驗方法與步驟(41)
3.1 實驗樣品及藥品(41)
3.2 實驗架構(44)
3.3 實驗流程(45)
3.3.1 含氮化鎵發光二極體廢晶圓樣品製備與特性分析(45)
3.3.2 酸溶浸漬(46)
3.3.3 離子交換法(48)
3.3.4 金屬化合物析出(54)
3.4 實驗設備及儀器(54)
第四章 結果與討論(58)
4.1 含氮化鎵發光二極體廢晶圓特性分析(58)
4.2酸溶浸漬(64)
4.2.1 常壓酸浸漬(64)
4.2.2 鹼焙燒酸浸漬(66)
4.2.3 加壓酸浸漬(68)
4.2.4 酸溶浸漬小結(73)
4.3 金屬分離純化研究(74)
4.3.1 吸附批次實驗(75)
4.3.2 離子交換管柱實驗(86)
4.3.3 離子交換小結(98)
4.4 金屬化合物析出(100)
4.4.1 化學沉澱與煅燒(100)
4.4.2 金屬氧化物產物分析(103)
第五章 結論與建議(106)
5.1 結論(106)
5.2 建議之回收流程(107)
參考文獻(109)

參考文獻 1.Pankove, J., “Properties of Gallium Nitride,” MRS Proceedings, 97, 1987.
2.GrandViewResearch, “Market Research Reports & Consulting,” Grand View Research, Inc, 2017
Retrieved from https://www.grandviewresearch.com/.
3.Tsao, J., Han, J., & Haitz, R., “ The Blue LED Nobel Prize: Historical context, current scientific understanding, human benefit.,”Annalen Der Physik, 527(5-6), A53-A61, 2015.
4.LED (Index) , “TrendForce - Market report, price trend and B2B platform of DRAM, NAND Flash, LEDs, TFT-LCD and green energy, PV, ” 2018. Retrieved from https://www.trendforce.com/price/led
5.U.S. Geological Survey, “Mineral Commodity Summaries 2012,”2012.
6.U.S. Geological Survey, “Mineral Commodity Summaries 2013,”2013.
7.U.S. Geological Survey, “Mineral Commodity Summaries 2014,”2014.
8.U.S. Geological Survey, “Mineral Commodity Summaries 2015,”2015.
9.U.S. Geological Survey, “Mineral Commodity Summaries 2016,”2016.
10.U.S. Geological Survey, “Mineral Commodity Summaries 2017,”2017.
11.U.S. Geological Survey, “Mineral Commodity Summaries 2018,”2018.
12.European Commission, “Critical Raw Materials for the EU: Report of the Ad- Hoc Working Group on Defining Critical Raw Materials, ” European Commission: Brussels, Belgium, 2010.
13.European Commission, “Report on Critical Raw Materials for the EU: Report of the Ad-Hoc Working Group on Defining Critical Raw Materials,” European Commission: Brussels, Belgium, 2014.
14.TOSIA台灣光電半導體產業協會, Retrieved from http://www.tosia.org.tw/
15.Asteljoki, J., & Stephens, R., “Pyrometallurgy,”TMS, 1998.
16.Venkatachalam, S., “Hydrometallurgy,”New Delhi: Narosa Pub. House, 1998.
17.“Nobel physics prize honors inventors of blue LEDs,” Physics Today, 2014.
18.Akasaki, I. , “GaN-Based p–n Junction Blue-Light-Emitting Devices,” Proceedings Of The IEEE, 101(10), 2200-2210, 2013.
19.Shen, X., Takahashi, T., & Ide, T., “High-quality GaN film and AlGaN/GaN HEMT grown on 4-inch Si(110) substrates by MOCVD using an ultra-thin AlN/GaN superlattice interlayer,”Physica Status Solidi (B), 252(5), 1075-1078, 2014.
20.J. Meija et al., “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem., vol. 88, no. 3, pp. 265–291, 2016.
21.J. F. Greber, “Gallium and Gallium Compounds,” Ullmann’s Encyclopedia of Industrial Chemistry, no. Ref 1, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 335–340, 2000.
22.European Commission, “Report on Critical Raw Materials for the EU: Critical Raw Materials Profiles,” European Commission: Brussels, Belgium, 2015.
23.B. W. Jaskula, “Minerals Yearbook 2014 Gallium,” no. October, 2016.
24.Huang Mengmeng, Li Hongxu, Liu Zhaobo. “Research progress on gallium extraction from different secondary resources,” Nonferrous Metals Science and Engineering, 8(1): 21-28, 2017.
25.翟秀靜、呂子劍,“鎵冶金”,北京:冶金工業出版社,2010。
26.中華民國財政部關務署,“2017進、出口貨物數量、價值查詢,鎵(Gallium)”,2017。
27.Liu, Z., & Li, H., “Metallurgical process for valuable elements recovery from red mud—A review,”Hydrometallurgy, 155, 29-43, 2015.
28.Filik, H., & Apak, R. , “A Chelating Ion Exchanger for Gallium Recovery from Alkaline Solution Using 5-Palmitoyl-8- hydroxyquinoline Immobilized on a Nonpolar Adsorbent,”Separation Science And Technology, 33(8), 1123-1134,1998.
29.Okushita, H., & Shimidzu, T., “Selective separation of Ga3+ through membrane impregnated with N-octadecanoyl-N-phenylhydroxylamine,” Journal Of Membrane Science, 105(1-2), 43-49, 1995.
30.Leveque ,A., Helegorsky, J, “The recovery of allium from Bayer process aluminate solutions by liquid-liquid extraction,”International Solvent Extraction Conference, 1997: 439–442, 1997.
31.Borges, P., & Masson, I., “Solvent extraction of gallium with kelex 100 from Brazilian weak sodium aluminate solution,” Minerals Engineering, 7(7), 933-941, 1994.
32.南娟茹、費作朋,“拜耳法生產氧化鋁提取伴生鎵”,百科論壇,2013(14): 373, 2013。
33.Puvvada, G., Chandrasekhar, K., & Ramachandrarao, P., “Solvent extraction of gallium from an Indian Bayer process liquor using Kelex-100,” Minerals Engineering, 9(10), 1049-1058, 1996.
34.宋嘉偉,“鹽酸浸出赤泥綜合回收有價金屬的基礎研究”,山西:太原理工大學,2013。
35.路坊海、周登風、張華軍,“樹脂吸附-酸脫附法在氧化鋁生產流程中回收金屬鎵的應”,輕金屬,2013(7): 8–12,2013。
36.Abdulvaliyev, R., Akcil, A., & Gladyshev, S., “ Gallium and vanadium extraction from red mud of Turkish alumina refinery plant: Hydrogarnet process,” Hydrometallurgy, 157, 72-77, 2015.
37.黃宣豪, “自氮化鎵廢鹼液中分離與純化鎵之研究”,碩士論文,臺北:國立臺北科技大學化學工程研究所,2012。
38.黃詩詠,“具有氮化鎵磊晶層的藍寶石基板的回收方法”,中華民國專利I514624,2015。
39.Park, K., Swain, B., & Kang, L et al. , “ Leaching behavior of Ga and In from MOCVD dust,” Journal Of Korean Powder Metallurgy Institute, 21(3), 202-206, 2014.
40.Park, K., Swain, B., & Kang, L., “ Study on Leaching Behavior for Recovery of Ga Metal from LED Scraps,” Applied Chemistry For Engineering, 25(4), 414-417, 2014.
41.Swain, B., Mishra, C., & Kang, L. , “ Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching” Environmental Research, 138, 401-408,2015.
42.Swain, B., Mishra, C., & Kang, L., “ Recycling of metal-organic chemical vapor deposition waste of GaN based power device and LED industry by acidic leaching: Process optimization and kinetics study,” Journal Of Power Sources, 281, 265-271,2015.
43.Swain, B., Mishra, C., & Lee, K., “Recycling of GaN, a Refractory eWaste Material: Understanding the Chemical Thermodynamics” International Journal Of Applied Ceramic Technology, 13(2), 280-288, 2015.
44.Nagy, S., Bokányi, L., Gombkötő, I., & Magyar, T., “ Recycling of Gallium from End-of-Life Light Emitting Diodes,” Archives Of Metallurgy And Materials, 62(2), 1161-1166, 2017.
45.Zhao, Z., Li, X., & Chai, Y. , “Adsorption Performances and Mechanisms of Amidoxime Resin toward Gallium(III) and Vanadium(V) from Bayer Liquor,” ACS Sustainable Chemistry & Engineering, 4(1), 53-59, 2015.
46.Lu, F., Xiao, T., & Lin, J. , “ Recovery of gallium from Bayer red mud through acidic-leaching-ion-exchange process under normal atmospheric pressure,” Hydrometallurgy, 175, 124-132, 2018.
47.F.C. Liew, “Pyrometallurgy Versus Hydrometallurgy,” TES-AMM Singapore Engineering Department, Published April, 2008.
48.D. S. Smit, “The Leaching Behaviour of A Ni-Cu-Co Sulphide Ore in An Oxidative Pressure-Acid Medium,” Master’sthesis, Potchefstroomse Universiteit vir Christelike Hoer Onderwys, 2001.
49.Hirth, S., & Gottstein, G., “ Misorientation effects on discontinuous precipitation in Al–Ag–Ga,”Acta Materialia, 46(11), 3975-3984, 1998.
50.M. Sadeghi and L. Mokhtari, “Rapid separation of 67,68Ga from 68Zn target using precipitation technique,” J. Radioanal. Nucl. Chem., vol. 284, no. 2, pp. 471–473, 2010.
51.R. Dumortier, M. E. Weber, and J. H. Vera, “Removal and recovery of gallium from aqueous solutions by complexation with sodium di-(n-octyl) phosphinate,” Hydrometallurgy, vol. 76, no. 3–4, pp. 207–215, 2005.
52.Xu, K., Deng, T., & Liu, J. , “ Study on the recovery of gallium from phosphorus flue dust by leaching with spent sulfuric acid solution and precipitation,”Hydrometallurgy, 86(3-4), 172-177, 2007.
53.M. Nakayama and H. Egawa, “Recovery of gallium (III) from strongly alkaline media using a Kelex-100-loaded ion-exchange resin,” Ind. Eng. Chem. Res., vol. 36, no. 10, pp. 4365–4368, 1997.
54.M. Teramoto et al., “Separation of gallium and indium by supported liquid membranes containing 2-bromodecanoic acid as carrier: design of supported liquid membrane module based on batch permeation experiments,” Hydrometallurgy, vol. 33, no. 1–2, pp. 1–15, 1993.
55.K. Kondo, Y. Yamamoto, and M. Matsumoto, “Separation of indium(III) and gallium(III) by a supported liquid membrane containing diisostearylphosphoric acid as a carrier,” J. Memb. Sci., vol. 137, no. 1–2, pp. 9–15, 1997.
56.Rao, C. , “Selective preconcentration of gallium using Muromac A-1 ion exchange column,”Analytica Chimica Acta, 318(1), 113-116,1995.
57.Herdzik, I., Dembiński, W., & Narbutt, J., “ Separation of Gallium and Indium Isotopes by Cation and Anion Exchange Chromatography,”Solvent Extraction And Ion Exchange, 30(6), 593-603, 2012.
58.Shankar, S., & Venkataramani, B., “ Studies on Indigenous Ion Exchange Resins II: Alkaline Earth Metal Ion-hydrogen Ion Exchange Equilibria,” Journal Of Ion Exchange, 18(4), 250-253, 2007.
59.W.-S. Chen, S.-L. Huang, F.-C. Chang, J.-E. Chang, and Y.-N. Wang, “Separation of gallium and copper from hydrochloric acid by D2EHPA,” Desalin. Water Treat., vol. 54, no. 4–5, pp. 1452–1456, 2015.
60.Bautista, R. , “Gallium metal recovery,” JOM, 41(6), 30-31, 1989.
61.Babcock, K., & Marion, G. , “On Solubility and Solubility Product Constants,” Soil Science Society Of America Journal, 37(4), 662, 1973.
62.N. Takeno, “Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases,” Natl. Inst. Adv. Ind. Sci. Technol. Tokyo, no. 419, p. 285, 2005.
63.蘇英源、郭金國,“冶金學”,全華科技圖書股份有限公司,pp. 3-1-4-20, 2000年。
64.宋明裕,“電鍍製程重金屬廢水離子交換處理技術及案例介紹”,經濟部工業局清潔生產與環保技術e報,No. 80,2010年。
65.張文青,“分離分析化學”,華東理工大學出版社,pp. 157-183,2007年。
66.Tom D. Reynolds, “Unti operations and processes in environmental engineering”, International Thomson Publishing Asia, pp. 350-391, 1982.
67.G. Schmuckler, “Chelating resins-their anaanalytical properties and applications”, Talanta Vol. 12, pp. 281-290 ,1965.
68.C.E.Harland,”Ion Exchange:Theory and Practice,”Royal Society of Ch.emistry,39-48, 2007.
69.A.K.SenGupta,”Ion Exchange Technology: Advances in Pollution Control,”CRC Press, 1995.
70.朱屯,“萃取與離子交換”,冶金工業出版社,387-471,2005年。
71.Wołowicz, A., & Hubicki, Z., “Comparison of strongly basic anion exchange resins applicability for the removal of palladium(II) ions from acidic solutions,” Chemical Engineering Journal, 171(1), 206-215, 2011.
72.王廣珠、汪德良、崔煥芳,“離子交換樹脂使用及診斷技術”,化學工業出版社,12-14,2004。
73.Ahmed M. Donia, Asem A. Atia, “Uptake studies of copper (II) on glycidyl methacrylate chelating resin containing Fe2O3 particles”, Separation and Purification Technology 49, pp. 64-70, 2006.
74.Ronald R. Navarro, Kenji Tatsumi, “Role of anions on heavy metal sorption of a cellulose modified with poly (glycidyl methacrylate) and polyethyleneimine”, Wat. Res. Vol. 35, No. 11, pp. 2724–2730, 2001.
75.Asem A. Atia, Ahmed M. Donia, “Selective separation of mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups”, Reactive & Functional Polymers 65, pp. 267-275, 2005
76.A. Dabrowski, Z. Hubicki, P. Podkoscielny, “Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method”, Chemosphere 56, pp. 91-106, 2004.
77.Panpan Ling, Fuqiang Liu, “Adsorption of divalent heavy metal ions onto IDA-chelating resins: Simulation of physicochemical structures and elucidation of interaction mechanisms”, Talanta 81, pp. 424-432, 2010.
78.Sadhan Pramanik, Pulak K. Dhara, “A chelating resin containing bis(2-benzimidazolylmethyl)amine: synthesis and metal-ion uptake properties suitable for analytical application”, Talanta 63, pp. 485-490, 2004.
79.W. Li, H. Zhao , P.R. Teasdale, R. John, “ynthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd”, Reactive & Functional Polymers 52, pp. 31-41, 2002.
80.Yu Liu, Ya-Juan Liu, “Review Biosorption isotherms, kinetics and thermodynamics”, Separation and Purification Technology 61, pp. 229-242, 2002.
81.Ahmet Sari, Durali Mendil, Mustafa Tuzen, “Biosorption of Cd (II) and Cr (III) from aqueous solution by moss (Hylocomium splendens) biomass : Equilibrium, kinetic and thermodynamic studies”, Chemical Engineering Journal 144, pp. 1-9, 2008.
82.Ahmet Sarı, Mustafa Tuzen, Demirhan Cıtak, “Adsorption characteristics of Cu (II) and Pb (II) onto expanded perlite from aqueous solution”, Journal of Hazardous Materials 148, pp. 387–394, 2007.
83.R. Donat, “Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions”, Journal of Colloid and Interface Science 286, pp. 43–52, 2005.
84.Mohammad Ajmal, Rifaqat Ali Khan Rao, “Adsorption of copper from aqueous solution on Brassica cumpestris (mustard oil cake)”, Journal of Hazardous Materials B122, pp. 177–183, 2005.
85.M.H. Khani, H. Pahlavanzadeh, “Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae”, Journal of Hazardous Materials 150, pp. 612–618, 2008.
86.D.M. Ruthven, “Principles of adsorption and adsorption processes,”John Wiley & Sons,1984.
87.周書葵,“放射性廢水處理技術”,中國化學工業出版社,2012。
88.Liu, Y., “ Is the Free Energy Change of Adsorption Correctly Calculated?,” Journal Of Chemical & Engineering Data, 54(7), 1981-1985, 2009.
89.M. Barros et al., “General Aspects of Aqueous Sorption Process in Fixed Beds,” In Mass Transfer-Advances in Sustainable Energy and Environment Oriented Numerical Modeling, In Tech, 2013.
90.W. Chia-Ying, “Recovery of Tungsten and Vanadium from Spent SCR Catalysts bt Ion Exchange, ”Master dissertation. National Cheng Kung University, 2015.
91.R. F. Helms, “Evaluation of ion exchange for demineralization of wastewater,” Master’s Thesis , University of Colorado, Boulder, Co, 1973.
92.Zacaria Reddad, “Adsorption of Several Metal Ions onto a Low-Cost Biosorbent: Kinetic and Equilibrium Studies”, Environ. Sci. Technol 36. pp. 2067-2073, 2002.
93.Dorota Koøodyn ska, “Application of a new-generation complexing agent in removal of heavy metal ions from aqueous solutions”, Ind. Eng. Chem. Res. 47, pp. 3192-3199, 2008.
94.D. Feng, “Treatment of acid mine water by use of heavy metal precipitation and ion exchange,” Minerals Engineering, Vol. 13, No. 6, pp. 623-642, 2000.
95.Cheremisina, O., Ponomareva, M., & Sagdiev, V. , “Sorption recovery of gallium and aluminum from alkaline solutions on an AN-31 anion exchanger,” Russian Journal Of Non-Ferrous Metals, 58(4), 365-372, 2017.
96.Lu, F., Xiao, T., & Lin, J., “Resources and extraction of gallium: A review,” Hydrometallurgy, 174, 105-115, 2017.
97.Kataoka, Y., Matsuda, M., Yoshitake, H., Hirose, Y., U.S. Patent No. 4,468,374.Washington, DC: U.S. Patent and Trademark Office, 1984.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw