進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1102201911085700
論文名稱(中文) 以雙氣體霧化、無電鍍及擠型製程製作Mg-Cu-Gd/Cu塊狀金屬玻璃複合材及其機械性質之探討
論文名稱(英文) Utilizing Dual-Jet Atomization, Electroless Plating and Extrusion to Synthesize Mg-Cu-Gd/Cu Bulk Metallic Glass Composite and Study of its Mechanical Properties
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 黃一宸
研究生(英文) Yi-Chen Huang
學號 N56041276
學位類別 碩士
語文別 中文
論文頁數 87頁
口試委員 指導教授-曹紀元
口試委員-郭瑞昭
口試委員-齊孝定
中文關鍵字 快速凝固霧化法  鎂基金屬玻璃複合材  無電鍍銅  背向式擠型 
英文關鍵字 Rapid-Solidifying Atomization  Mg-based metallic glass composite  Electroless plating  Backward Extrusion 
學科別分類
中文摘要 鎂基非晶質合金擁有良好的玻璃形成能力,且具有低冷卻速率形成非晶態的特性,而本研究經由雙氣體霧化法製備出鎂銅釓金屬玻璃的非晶質粉末,已可達到89%的產率,由感應耦合電漿質譜儀(ICP)鑑定成分均勻,確定其組成為Mg67.4Cu23.3Gd9.4,且X光繞射分析(XRD)檢測為完全非晶,而示差掃描量熱法(DSC)分析熱性質,得知材料的玻璃轉換溫度、結晶溫度以及孕核時間,並計算Trg及γ等參數,評估此金屬玻璃的玻璃形成能力(GFA)。
將氣體霧化製程得到的Mg67.4Cu23.3Gd9.4非晶質金屬玻璃粉末,以無電鍍方式在其表面析鍍銅鍍層後,再以熱壓及擠型製程製備Mg-Cu-Gd/Cu金屬玻璃複合材(BMGC),探討不同析鍍參數下對機械性質的影響。
英文摘要 Mg-Cu-Gd metallic glass powders were synthesized by Rapid-Solidifying Atomization (RSA). The RSAed powder was fully amorphous shown by X-Ray Diffractometry (XRD), and the glass transition temperature (Tg), crystallization temperature (Tx) and incubation time were determined by Differential Scanning Calorimeter (DSC). The value of Trg and γ were criterion with the glass forming ability (GFA) of Mg-based metallic glass.
The Mg-Cu-Gd/Cu ex-situ metallic glass powders is synthesized by electroless plating via different coating time. The bulk Mg-Cu-Gd/Cu ex-situ metallic glass composite is consolidated by hot pressing and backward extrusion. The micro structure is studied by Scanning Electron Microscope(SEM).
論文目次 中文摘要 I
英文延伸摘要 II
致謝 VII
目錄 VIII
表目錄 XI
圖目錄 XII
第一章 序論 1
1-1 前言 1
1-2 研究目標 1
1-3 製程選擇 2
第二章、 文獻回顧與理論基礎 3
2-1 塊狀金屬玻璃(BMG, Bulk Metallic Glasses) 3
2-2 金屬玻璃的製造方法 3
2-2-1 噴覆成型(Spray Forming) 3
2-2-2 噴射鑄造(Injection Casting) 5
2-2-4 粉末冶金製程 6
2-3 金屬玻璃的形成與玻璃形成能力(Glass Forming Ability) 6
2-4 熱分析理論 9
2-5 無電鍍簡介 9
2-5-1 無電鍍機制簡介 10
2-6 擠型及理論分析 11
2-6-1 擠型理論 11
2-6-2 變形行為(Deformation Behavior) 13
2-7 機械性質 14
2-7-1 微硬度 14
2-7-2 韌性 14
2-7-3 室溫壓縮性質與破壞行為 14
2-8 應力誘發結晶(Stress-induced Crystallization) 15
第三章、實驗方法及步驟 17
3-1 製備快速凝固霧化法之金屬玻璃粉末 17
3-2 X光繞射(XRD, X-Ray Diffractometry)之結構鑑定 17
3-3 示差掃描量熱法(DSC, Differential Scanning Calorimeter) 17
3-4 電子顯微鏡(SEM)及成份鑑定 17
3-5 微硬度(micro-hardness) 18
3-6 Mg-Cu-Gd/Cu複合粉末製備 18
3-7 熱壓(Hot Pressing) 18
3-8 背向式擠型(Backward Extrusion) 18
3-9 室溫壓縮試驗(Compression Test) 19
第四章、結果與討論 20
4-1 以無電鍍法鎂銅釓/銅複合金屬玻璃粉末 20
4-1-1 粉末粉末基本性質 20
4-1-2 無電鍍鍍銅 21
4-2 鍍銅鎂銅釓金屬玻璃粉末熱壓 21
4-3 鍍銅鎂銅釓金屬玻璃粉末熱壓塊材擠型 22
4-3-1 外觀、相及硬度 22
4-3-2 應力與衝頭位移 22
4-3-3 結構及流變觀察 22
4-4 鍍銅鎂銅釓金屬玻璃擠型塊材之室溫壓縮 24
4-4-1 同參數樣本差異 24
4-4-2 破斷面 24
第五章、結論 26
參考文獻 28
參考文獻 1. Inoue, A., T. Zhang, and T. Masumoto, Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Materials Transactions, JIM, 1990. 31(3): p. 177-183.
2. Young, K. and K. Jin, Synthesis and characterization of bulk metallic glasses, composites and hybrid porous structures by powder metallurgy of metallic glassy powders. 2015
3. Ashby, M. F. and A. L. Greer, Metallic glasses as structural materials. Scripta Materialia, 2006. 54(3): p. 321-326.
4. Chang, Y. C., Hung, T. H., Chen, H. M., Huang, J. C., Nieh, T. G., & Lee, C. J., Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy. Intermetallics, 2007. 15(10): p. 1303-1308.
5. Zheng, Q., J. Xu, and E. Ma, High glass-forming ability correlated with fragility of Mg-Cu(Ag)-Gd alloys. Journal of Applied Physics, 2007. 102(11): p. 113519-5.
6. Xu, Y. K., Ma, H., Xu, J., & Ma, E., Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Materialia, 2005. 53(6): p. 1857-1866.
7. 陳海明, 鎂銅銀釓塊狀非晶質合金之玻璃形成能力及機械性質. 2006國立中山大學材料科學研究所碩士論文.
8. Jason S.-C. Jang, , , S.-R. Jian, T.-H. Li, J.C. Huang, Chi Y.-A. Tsao and C.-T. Liu, Structural and mechanical characterization of ductile Fe particles-reinforced Mg -based bulk metallic glass composites. Journal of Alloys and Compounds, 2009 458(1-2) p. 290-294.
9. J.S.C. Jang , , T.H. Li, S.R. Jian, J.C. Huang and T.G. Nieh, Effects of characteristics of Mo dispersions on the plasticity of Mg -based bulk metallic glass composites. Intermetallics, 2011. 19(5) p. 738-743.
10. Makoto Kinaka, Hidemi Kato, Masashi Hasegawa, Akihisa Inoue, High specific strength Mg-based bulk metallic glass matrix composite highly ductilized by Ti dispersoid, Journal of Materials Science and Engineering, 2008. 494 p. S299-S303.
11. P. Duwez, R. H. Willens and W. Klement, Thermophysical properties of bulk metallic glass-forming liquids, Nature, 1960. vol.187 p.869-870.
12. Chen, H.S., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): p. 1505-1511.
13. Chang, L.J., et al., Crystallization and thermal stability of the Mg65Cu25-xGd10Agx (x=0-10) amorphous alloys. Journal of Alloys and Compounds, 2007. 434-435: p. 221-224.
14. , Inoue, A., Kato, A., Zhang, T. G. K. S., & Masumoto, Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Materials Transactions, JIM, 1991. 32(7): p. 609-616
15. Xi, X. K., Zhao, D. Q., Pan, M. X., & Wang, W. H., On the criteria of bulk metallic glass formation in MgCu-based alloys. Intermetallics, 2005. 13(6): p. 638-641.
16. Yuan, G. and A. Inoue, The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys. Journal of Alloys and Compounds, 2005. 387(1-2): p. 134-138.
17. Soubeyroux, J. L., Puech, S., Donnadieu, P., & Blandin, J. J., et al., Synthesis and mechanical behavior of nanocomposite Mg-based bulk metallic glasses. Journal of Alloys and Compounds, 2007. 434-435: p. 84-87.
18. Zheng, Q., Cheng, S., Strader, J. H., Ma, E., & Xu, J., et al., Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system. Scripta Materialia, 2007. 56(2): p. 161-164.
19. Akihisa Inoue, Tao Zhang, and T. Masumoto, Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region Materials Transactions, JIM, 1989. 30(12): p. 965-972.
20. Hufnagel, T. C., Jiao, T., Li, Y., Xing, L. Q., & Ramesh, K. T., et al., Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. Materials Research Society, 2002. 17(6).
21. Bletry, M., et al., Free volume model: High-temperature deformation of a Zr-based bulk metallic glass. Acta Materialia, 2006. 54(5): p. 1257-1263.
22. Hui, X., Liu, S. N., Pang, S. J., Zhuo, L. C., Zhang, T., Chen, G. L., & Liu, Z. K., High-zirconium-based bulk metallic glasses with large plasticity. Scripta Materialia, 2010. 63(2): p. 239-242.
23. Huang, Y. J., Shen, J., Chiu, Y. L., Chen, J. J. J., & Sun, J. F., Indentation creep of an Fe-based bulk metallic glass. Intermetallics, 2009. 17(4): p. 190-194.
24. Keryvin, V., V.H. Hoang, and J. Shen, Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation. Intermetallics, 2009. 17(4): p. 211-217.
25. Akihisa Inoue, N. Nishiyama, and T. Matsuda, Preparation of Bulk Glassy Pd40Ni10Cu30P20 Alloy of 40 mm in Diameter by Water Quenching. Materials Transactions, JIM, 1996. 37(2): p. 181-184.
26. Schwarz, R.B. and Y. He, Bulk Metallic Glass Formation in the Pd-Ni-P and Pd-Cu-P Alloy Systems. 1997: p. pp 287-299.
27. Men, H., W.T. Kim, and D.H. Kim, Glass formation and crystallization behavior in Mg65Cu25Y10-xGdx (x=0, 5 and 10) alloys. Journal of Non-Crystalline Solids, 2004. 337(1): p. 29-35.
28. 吳學陞, 工業材料, 1999. 149: p. 154-165.
29. Angell, C.A., Formation of Glasses from Liquids and Biopolymers. Science, 1995. 267(5206): p. 1924-1935.
30. Lu, Z.P. and C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002. 50(13): p. 3501-3512.
31. Du, X. H., Huang, J. C., Liu, C. T., & Lu, Z. P., New criterion of glass forming ability for bulk metallic glasses. Journal of Applied Physics, 2007. 101(8): p. 086108.
32. Tanaka, H., Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. Journal of Non-Crystalline Solids, 2005. 351(8-9): p. 678-690.
33. Spaepen, F., A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977. 25(4): p. 407-415.
34. Guo, M. T., Tsao, C. Y., Huang, J. C., & Jang, J. S. C., et al., Crystallization behavior of spray-formed and melt-spun Al89La6Ni5 hybrid composites with amorphous and nanostructured phases. Materials Science and Engineering: A, 2005. 404(1-2): p. 49-56.
35. Matusita, K. and S. Sakka, Kinetic study of crystallization of glass by differential thermal analysis--criterion on application of Kissinger plot. Journal of Non-Crystalline Solids, 1980. 38-39(Part 2): p. 741-746.
36. Kissinger, H.E., Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957. 29: p. 1702-1706.
37. Katayun, B., A Commentary on: ``Reaction Kinetics in Processes of Nucleation and Growth'*. Metallurgical and Materials Transactions A, 2010. 41(11): p. pp.2711-2775.
38. Avrami, M., Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys., 1941. 9(2): p. 177-184.
39. 張中良, 非導體表面之金屬化, 工業材料雜誌, 1996. 112: pp.86-92.
40. 神戶德藏著, 莊萬發譯著, 無電解鍍金, 復漢出版社印行, 1989.
41. G.O. Mallory and J.B. Hajdu, Electroless Plating:Fundamentals and Applications, AESF, 1990,Chap.1.
42. Russev, Dimiter, Radev, Dimitet, Karaivanov, Stefan, Immersion Silvering of Copper, Metal Finishing. 1983. 81(1) :p.27-30.
43. 楊聰仁, 無電解電鍍鎳研究與應用現況, 工業材料, 1995. 106期, pp.118-123
44. 莊萬發, 無電解鍍金-化學鍍金技術, 復漢出版社, 1996.
45. Paunovic, Milan, and Mordechay Schlesinger. Fundamentals of electrochemical deposition. New York . 2006:p. 139-166
46. Argon, A.S., Plastic-Deformation in Metallic Glasses. Acta Metallurgica, 1979. 27(1): p. 47-58.
47. Wang, W.H., Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids. JOURNAL OF APPLIED PHYSICS 2011. 110(5): p. 053521-053521-15.
48. Heggen, M., F. Spaepen, and M. Feuerbacher, Creation and annihilation of free volume during homogeneous flow of a metallic glass. JOURNAL OF APPLIED PHYSICS, 2005. 97(3): p. 033506-033506-8.
49. Wang, W.H., The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012. 57: p. 487-656.
50. Trexler, M.M. and N.N. Thadhani, Mechanical properties of bulk metallic glasses. Progress in Materials Science, 2010. 55: p. 759–839.
51. Inoue, A., Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000. 48(1): p. 279-306.
52. Prasad, Y. V. R. K., Gegel, H. L., Doraivelu, S. M., Malas, J. C., Morgan, J. T., Lark, K. A., & Barker, D. R., Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metallurgical and Materials Transactions A, 1984. 15(10): p. 1883-1892.
53. Hajlaoui, K., Yavari, A. R., Doisneau, B., LeMoulec, A., Vaughan, G., Greer, A. L., ... & Kvick, Å., Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scripta Materialia, 2006. 54(11): p. 1829-1834.
54. 陳宗傑, 以雙氣體霧化法及熱壓擠型製程製作Mg-Cu-Gd原位金屬玻璃複合塊材並對其性質之研究. 2017國立成功大學材料科學及工程學系研究所碩士論文.
55. Chen, F. H., Chang, K. F., Tsao, C. Y., Guo, M. L. T., Huang, J. C., & Jang, J. S. C., Microstructures and mechanical behaviors of Mg58Cu31Gd11 and Mg65Cu25Gd10 amorphous alloys synthesized by injection casting and melt spinning. Journal of Alloys and Compounds, 2009. 483(1-2): p. 32-36.
56. Yu, Hui, Sung Hyuk Park, and Bong Sun You. Die angle dependency of microstructural inhomogeneity in an indirect-extruded AZ31 magnesium alloy. Journal of Materials Processing Technology 224 (2015): 181-188.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw